Academics

Section Navigation

Bryan Keller

Professional Background

Educational Background

Ph.D. (Educational Psychology, Quantitative Methods), University of Wisconsin-Madison, 2013
M.A. (Educational Psychology, Quantitative Methods), University of Wisconsin-Madison, 2010
M.S. (Mathematics), Binghamton University, 2002
M.A.T. (Mathematics, grades 8-12), Binghamton University, 2001
B.S. (Mathematics, cum laude), Binghamton University, 2000

Scholarly Interests

Propensity score analysis; Multilevel modeling; Randomization-based statistical tests, and Data mining techniques

Selected Publications

Keller, B., Kim, J.-S., & Steiner, P. M. (2015). Neural networks for propensity score estimation: Simulation results and recommendations. In L. A. van der Ark, D. M. Bolt, S.-M. Chow, J. A. Doublas, & W.-C. Wang (Eds.), New methods and applications in psychometrics: The 79th annual meeting of the psychometric society. New York, NY: Springer.

Kim, J.-S., Anderson, C. J., & Keller, B. (2014). Multilevel analysis of large-scale assessment data. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), A handbook of international large-scale assessment: Background, technical issues, and methods of data analysis. London: Chapman Hall/CRC Press.

Anderson, C. J., Kim, J.-S., & Keller, B. (2014). Modeling multilevel categorical response variables. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), A handbook of international large-scale assessment: Background, technical issues, and methods of data analysis. London: Chapman Hall/CRC Press.

Keller, B., Kim, J.-S., & Steiner, P. M. (2013). Data mining alternatives to logistic regression for propensity score estimation: Neural networks and support vector machines. Multivariate Behavioral Research, 48, 164 (Abstract).

Keller, B. (2012). Detecting treatment effects with small samples: The power of some tests under the randomization model. Psychometrika, 77, 324-338.

Kaplan, D. & Keller, B. (2011). A note on cluster effects in latent class analysis. Structural Equation Modeling, 18, 525-536.