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How do people understand the everyday, yet intricate, behaviors that unfold around them? In the present
research, we explored this by presenting viewers with self-paced slideshows of everyday activities and
recording looking times, subjective segmentation (breakpoints) into action units, and slide-to-slide
physical change. A detailed comparison of the joint time courses of these variables showed that looking
time and physical change were locally maximal at breakpoints and greater for higher level action units
than for lower level units. Even when slideshows were scrambled, breakpoints were regarded longer and
were more physically different from ordinary moments, showing that breakpoints are distinct even out
of context. Breakpoints are bridges: from one action to another, from one level to another, and from

perception to conception.
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Understanding others’ behavior is crucial in navigating the
social world. Whether one is buying a cup of coffee or having a
conversation, interpersonal interaction relies on rapidly recogniz-
ing actions, interpreting their intentions, anticipating future ac-
tions, and coordinating one’s own actions accordingly. This ability
is remarkable: The quantity and quality of information in human
activities is vast and varied. One way the mind copes with such
immense information is by reducing and organizing it: The spatial
stream of information is segmented into figures, grounds, people,
objects, and scenes. Segmenting the temporal stream into mean-
ingful units of action similarly reduces the barrage of information
(e.g., Rosch, 1978; Tversky & Hemenway, 1984; Tversky, Zacks,
& Hard, 2008). The mind must also organize the units that it
segments. Whereas units of people, objects, and scenes have
spatial organizations, units of action have temporal ones: parts
configured in time. Segmenting and inferring the organization of
ongoing action is fundamental for many tasks of life: for perceiv-
ing and understanding others’ actions, for coordinating our behav-
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iors with others, and for learning and adapting action sequences to
suit our own goals. Here, we present a novel approach to the study
of action segmentation and organization, investigating the joint
time courses of attention, information change, and segmentation.

Segmentation and Organization

Studying how people segment ongoing activities into parts has
been brought into the laboratory in a task developed by Newtson
(1973). As observers view videos of ongoing activities, they press
a key to indicate the moments when one action unit ends and
another begins, termed breakpoints. Although activities could be
segmented at infinite temporal locations, people are remarkably
consistent, both with one another and with themselves across
viewings, in marking breakpoints (Dickman, 1963; Hard, Tversky,
& Lang, 2006; Newtson & Engquist, 1976; Zacks, Tversky, &
Iyer, 2001). The action units bookended by these breakpoints are
described or recalled with expressions like rinsed the dish or
smoothed the sheet, indicating that they correspond to actions on
objects or accomplished goals (e.g., Baldwin & Baird, 1999;
Kurby & Zacks, 2008; Newtson, 1973; Zacks, Speer, Swallow,
Braver, & Reynolds, 2007; Zacks, Tversky, & Iyer, 2001).

How are action units organized? Like mental representations of
other things in the world, representations of human activities are
structured hierarchically into actions and parts of actions, both
when performing activities (e.g., Lashley, 1951) and when apply-
ing knowledge of them in planning, describing, and recalling. For
example, people’s listings of features for going to a restaurant
include components such as be seated, look at menu, and order
food, with subcomponents for each of these (e.g., Bower, Black, &
Turner, 1979). The hierarchical organization that emerges when
planning and describing activities also emerges when segmenting
activities in the laboratory. When participants segment films of
activities twice, once into the largest units that seem natural and
meaningful (coarse grain) and once into the smallest units (fine
grain), large and small units form a hierarchy (e.g., Hard et al.,
2006; Kurby & Zacks, 2008; Newtson, 1973; Zacks, Tversky, &
Iyer, 2001). Making a bed, for example, is segmented as putting on
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the bottom sheet, putting on the top sheet, changing the pillow-
cases, and so on. Each of these larger units is segmented into
subactions that correspond to subgoals, for putting on the bottom
sheet: spreading the sheet, tucking in the corners, and smoothing
it out.

Breakpoints Are Privileged

Given that breakpoints separate meaningful units of action, it is
intuitive to think of them as conceptually “empty” moments in the
flow of action when nothing is happening, like the spaces between
words or the pauses between phrases. Yet a wealth of research
contradicts this intuition: Breakpoints appear to be especially
memorable and meaningful moments in the stream of ongoing
action. Single frame images corresponding to breakpoints are
better recognized than are images corresponding to within-unit
moments (Newtson & Engquist, 1976). Also, sequences of images
taken from breakpoints in an action sequence are described more
accurately, rated as more intelligible, and ordered more correctly
than are sequences of within-unit images (Newtson & Engquist,
1976). What is more, removing breakpoints from ongoing action is
disruptive: Films of events with breakpoint moments removed are
remembered less well than films of events with within-unit mo-
ments removed (Schwan & Garsoffky, 2004).

Breakpoints thus seem less like the spaces between words and
more like the inflection points in an object contour that define the
object’s parts. Like inflection points, breakpoints correspond to
discontinuities in the flow of information. A number of studies
have shown, for example, that physical movement increases at
breakpoints. In one study, the number of joints moving on an actor
was greater for breakpoints than for within-unit points (Newtson,
Engquist, & Bois, 1977). In other research, observers watched and
segmented films of animated geometric figures that could be
interpreted as intentional movements of agents. In one study, the
number of different kinds of motion changes, such as changes in
speed or direction was greater for breakpoints than for within-unit
moments (Hard et al., 2006). In another study, regression analyses
showed that breakpoint locations were well predicted by low-level
physical changes (Zacks, 2004). In more recent work, researchers
found more movements of actors’ hands at breakpoints, in activ-
ities like assembling Lego blocks or folding laundry (Zacks, Ku-
mar, Abrams, & Mehta, 2009). Together, these studies suggest that
there is greater change in the action stream at breakpoints and,
consequently, greater amounts of new information to process.

That action change is greater at breakpoints than at ordinary
moments in the behavior stream may have important consequences
for how people process activities in real time. According to event
segmentation theory (EST; Kurby & Zacks, 2008; Reynolds,
Zacks, & Braver, 2007; Zacks et al., 2007), observers understand
activities by constructing a set of ongoing representations of “what
is happening now,” called event models. Event models are gener-
ated using both bottom-up input from the action stream and top-
down input from knowledge structures in memory called event
schemata. Event models serve to generate perceptual predictions
that guide processing of the activity. Within action units, event
models make good predictions, meaning that the actor’s move-
ments continue to match the observer’s representation of “what is
happening now.” But as actions are completed and the situation
changes, prediction error increases, and the contents of the event

models become unstable. When prediction error is sufficiently
high, breakpoints are perceived, and the event models must be
updated. Updating the event models requires increased processing
of bottom-up input and activating appropriate event schemata to
replace the previous ones.

According to EST, breakpoints involve a convergence of major
changes in bottom-up perceptual information and in top-down
conceptual information. This view of breakpoints is consistent
with available data. Studies performed outside the laboratory show
that breakpoints are marked at conceptual changes in setting, actor,
object, or action (Barker & Wright, 1955). In the laboratory, the
play-by-play descriptions of actions indicate that breakpoints also
coincide with changes in intentions as they mark the accomplish-
ment of goals or subgoals (Zacks, Tversky, & Iyer, 2001). The
convergence of perceptual and conceptual changes at breakpoints
has parallels in the domain of physical object segmentation. For
objects, the convergence of perceptual and conceptual information
allows people to segment objects on the basis of perceptual fea-
tures and to bootstrap those segment boundaries to inferences
about more abstract behavioral and functional information (Tver-
sky & Hemenway, 1984). The convergence of perceptual and
conceptual information in action segmentation may allow similar
bootstrapping.

Breakpoints are transitions from action to action, separating
event parts as well as bridging them. Because a new action is often
begun as the current one is completed (Mennie, Hayhoe, & Sulli-
van, 2007), breakpoints often simultaneously capture the comple-
tion of one action and the initiation of the next. Because so much
happens at breakpoints of both a perceptual and a conceptual
nature, breakpoints should be moments not only of greater physical
change but also of heightened attention, that is, increased intensity
of information processing. This analysis can account for many of
the previous findings. If breakpoints are accompanied by greater
information and heightened attention, then they should be espe-
cially memorable and comprehensible (Newtson & Engquist,
1976), and removing them from an action sequence should be
especially disruptive (Schwan & Garsoffky, 2004).

Predictions and Approach

According to the present analysis, breakpoints are privileged
because they are inherently more informative than are other mo-
ments in the action stream: They correspond to significant percep-
tual and conceptual transitions. This reasoning leads to a set of
predictions, tested in the first experiment. Because of their greater
informativeness, breakpoints should demand heightened attention
and processing. This prediction is tested with a new measure of
action processing: dwell time. Dwell time is the amount of time
observers look at still-frame images—slides—taken at equal inter-
vals across an action sequence. Dwell time should be longer at
breakpoints. Second, breakpoints should correspond to greater
change in the action stream. This prediction is tested with a new,
objective measure of physical change from slide to slide. Together,
these new measures, dwell time and change, provide a detailed
picture of the joint time courses of attention and information
change, with respect to breakpoints, as activities unfold. Next, if
breakpoints are indeed the informative moments of an action
stream that define its contour or “shape,” then greater attention to
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breakpoints should enhance overall memory for the action se-
quence. The first experiment examines these predictions.

In the second experiment, we investigate a corollary of the
analysis. Because they mark major perceptual and conceptual
changes as well as transitions between actions, breakpoints may be
informative, even out of context. The second experiment tested
this possibility by examining dwell time and change across chron-
ologically ordered versus scrambled sequences of slides. If break-
points are informative even out of context, then we expect them to
draw longer dwell time, even when temporal sequencing is dis-
rupted.

Experiment 1: Looking Time and Change Are
Maximal at Breakpoints

In this experiment, we examined the joint time courses of
attention, physical change, and breakpoints using a novel dwell
time method. Films of action sequences were sampled every sec-
ond and turned into slideshows. Observers watched a slideshow at
their own pace, under instructions to study the action sequence for
later recall; the variable of interest was dwell time (i.e., time spent
looking at each slide). When there is more information to process,
presumably at breakpoints, dwell time should increase. Break-
points were determined by later segmentation of the source films
into units at multiple levels of granularity. A second novel method
provided an index of information change. The pixel-to-pixel
change from slide to slide was computed after the slides had been
put through a filter that extracted figures and eliminated possible
confounding effects such as lighting changes. The simple predic-
tion is that dwell time and change should increase at breakpoints.

The dwell time procedure can add substantially to earlier evi-
dence that observers spontaneously segment events hierarchically.
Previous research demonstrating hierarchical segmentation in-
volved explicitly instructing participants to divide activities into
coarse or fine units on different viewings and then showing that the
boundaries of coarse and fine units temporally align (Zacks, Tver-
sky, & Iyer, 2001). Although participants were not instructed to
select coarse and fine units that were hierarchically related, simply
instructing participants to segment activities on different levels
may bias them toward a hierarchical interpretation of activities.
The dwell time procedure, because it measures attention in the
absence of any specific instructions to segment the activity, pres-
ents a more naturalistic portrait of action processing. If observers
look longer at both coarse and fine breakpoints, then that implies
that they are segmenting at both levels simultaneously and spon-
taneously. Such a finding would be consistent with brain activation
data, which show that even under passive viewing of an activity,
several brain regions respond selectively to breakpoints at both
coarse and fine levels of segmentation (Zacks, Braver, et al.,
2001). Moreover, dwell time might vary systematically with level
of segmentation. Because coarse breakpoints mark larger changes
in goals of actors (Zacks, Tversky, & lyer, 2001) than do finer
breakpoints, they may correspond to larger amounts of physical
change as well. Larger conceptual and physical changes at coarse
breakpoints should elicit longer dwell time.

After viewing the slideshow, participants recalled as many ac-
tions from the slideshows as they could. If breakpoint moments
carry more information, then differential looking at breakpoints
should boost recall. What might we predict about the relation

between recall and differential looking at fine versus coarse break-
points? Previous evidence with a segmentation task indicates that
asking observers to segment activity at a fine level instead of a
coarse level boosts how much detail they can later recall (Hanson
& Hirst, 1989). In that task, viewers were instructed to attend to
only one level of segmentation, coarse or fine, for the purpose of
the segmentation task. A different outcome might emerge in the
dwell time procedure, in which observers are free to attend to
whatever they like. It is well known that organization improves
memory (e.g., Tulving, 1962). Thus, modulated attention that
reflects the hierarchical structure of the activities should further
enhance organization and sense making. Longer looking at coarse
breakpoints, specifically, because they correspond to changes in
the overarching goals of the activity, may suggest that observers
are encoding the hierarchical structure of an activity. Thus, if
observers are attending to multiple levels of abstraction simulta-
neously, fine units as well as coarse, then greater looking time at
coarse breakpoints should best predict recall.

Furthermore, if attention to coarse breakpoints is associated with
perceiving the hierarchical structure of the activity, then it should
predict how hierarchically organized a participant’s pattern of
segmentation is during the later segmentation task. We explored
two approaches to measuring degree of hierarchical organization
in segmentation patterns: a quantitative approach based on the
approach of Zacks, Tversky, and Iyer (2001) and a new qualitative
approach.

Method

Stimuli.  Four familiar, potentially hierarchically organized
activities were selected: cleaning a dorm room (cleaning), eating
breakfast (breakfast), putting on makeup (makeup), and assem-
bling a television cart (TV cart). Each of these activities was
performed, unscripted, by an actor and was filmed where the actor
typically performed the activity. The films ranged in length from
156 s to 247 s. For the films cleaning, breakfast, and makeup, an
actor was simply asked to perform the activity while being filmed.
For the film TV cart, the actor was a participant in a previous
experiment who had given permission to use his film in future
research.

Each film was shot with a stationary digital film camera at a rate
of 30 frames per second. A slideshow was created of each film by
selecting a single frame from the middle of each 1-s interval
(frame 15, 45, 75, etc.), resulting in slideshows ranging in length
from 156 to 247 slides. A sampling rate of 1 slide per second was
selected because it simplified the comparison of dwell time to
segmentation. Pilot testing indicated that the slideshows were
comprehensible at this rate and easy to view in a short sitting.

Participants and design. The experimental design was a 4 X
2 X 3 mixed factorial design, with activity (cleaning, breakfast,
makeup, and TV cart) and segmentation order (coarse to fine, fine
to coarse) varied between-subjects and segmentation level (fine,
intermediate, coarse) varied within. Forty Stanford undergraduates
participated in exchange for pay or course credit.

Dwell time procedure. Participants were instructed that they
would view a single slideshow on the computer; 10 participants
viewed each activity. They were asked to pay careful attention to
the actions being performed because they would recall those
actions later. The slideshow was self-paced; participants were told
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to spend as much time looking at each slide as they wished and to
advance to the next slide by pressing the spacebar. The procedure
did not permit participants to return to slides they had already
viewed. The experimenter left the room during slideshow viewing.
Afterward, participants were given a sheet of paper on which to list
as many actions as they could remember as accurately as possible.
Participants were not told how much detail to recall, and if they
asked, they were told to do whatever seemed reasonable to them.
The recall task was not timed.

Segmentation task procedure. After recalling the actions in
the slideshow, participants viewed and segmented a film version of
the activity that they had just viewed as a slideshow. Because we
were interested in whether dwell times would be modulated not
only by the breakpoints but also by the hierarchical structure of the
activities, it was critical to determine how participants would
segment the activities when attempting to organize them hierar-
chically. Thus, before segmenting the films, participants were
given specific examples of how activities can be broken down into
hierarchically organized parts to bias them toward looking for
hierarchical structure in the segmentation task.

Previous studies have examined segmentation at only two lev-
els, coarse and fine (Hard et al., 2006; Newtson, 1973; Zacks,
Tversky, & lyer, 2001). Because behavior is likely to be under-
stood on more than two levels, participants in the present study
identified units on at least three levels. On the first viewing,
participants in the coarse to fine condition were asked to divide the
activity into the largest units that seemed natural and meaningful.
On the second viewing, they were asked to divide the activity into
smaller units and, on the third viewing, into even smaller units.
Participants in the fine to coarse condition segmented three times
in the opposite order. All participants viewed and segmented on at
least three levels and were allowed to continue a fourth and even
a fifth time."

Calculation of physical change. In order to provide a metric
of low-level slide-to-slide change, we adapted change-detection
algorithms common in computer science (e.g., Radke, Andra,
Al-Kofahi, & Royam, 2005). Because we wanted an index reflect-
ing change in human action, the slides were preprocessed through
an edge-detection filter to remove possible confounds due to
variations in color, lighting, and the like. This left an array of
pixels varying in one dimension, brightness, for each slide. Then,
the difference between corresponding pixels of adjacent slides was
computed, yielding a change value for each slide. A more detailed
description of the metric is described in Appendix A. The only
activity in the films was the movements of a single actor, and the
films were taken from a camera on a tripod at a single visual angle,
so that any changes in pixels were attributable to movements and
reorientations of the actor’s body and any objects on which he or
she acted. When the actor moved or reoriented dramatically from
one slide to the next, then the brightness of the corresponding
pixels in the two slides differed more than when there was little
movement or reorientation.

Results

For all analyses, the criterion for significance was an alpha level
of .05. The p values for insignificant effects are reported only
when F or f values are greater than 1. For significant analysis of
variance (ANOVA) effects, we report partial eta squared (nﬁ) as an

estimate of effect size. For significant ¢ test effects, we report
Cohen’s d. When necessary, a Greenhouse-Geisser correction was
applied to the degrees of freedom to correct for violation of
sphericity.

Looking time data. For each participant, the first slide (and
corresponding 1-s bin of the segmentation data) was excluded
from all analyses because data collected during the first 1-s inter-
val are atypical because participants are adjusting to the task.
Looking times were then transformed with a log,, function to
reduce positive skewness. There was a trend for participants to
look longer at slides presented earlier in the slideshow, suggesting
that it takes some time for viewers to make general sense of the
activity. This trend was well described by a power function (see
Figure 1). Fitting power functions to the looking time data for each
participant accounted for an average 48% of variance (SEM = 3%)
in looking time. The looking time data were detrended to factor out
the influence of longer early looking times. A power function was
fit to the looking time data for each participant with a curve
estimation regression technique, and all further analyses were
conducted on the residuals from this regression analysis.

Segmentation data. There were no main effects of activity
(cleaning, breakfast, makeup, or TV cart) or segmentation order
(coarse to fine, fine to coarse) on the mean number of breakpoints
that participants identified, F(1, 32) < 1, MSE = 692.76, for both,
with no significant interactions. On average, fine breakpoints were
marked every 6.8 s, intermediate breakpoints were marked every
16.0 s, and coarse breakpoints were marked every 42.0 s.

Recall that participants were permitted to segment the activity
more than three times if they wanted to. Sixteen participants
segmented the activity a fourth time (eight participants in each
segmentation order condition). There were no significant differ-
ences in the mean number of fine, intermediate, and coarse break-
points (based on the first three segmentations each participant
performed) between these participants and those who segmented
only three times, #s(38) < 1. For the eight participants who
segmented a level coarser in the fine to coarse condition, their
fourth segmentation was on average more coarse (M length =
97.8 s) than the average coarse segmentation for the 12 participants
who only segmented three times (M length = 46.4 s). Similarly,
for the eight participants who segmented a level finer in the coarse
to fine condition, their fourth segmentation was on average finer
(M length = 4.6 s) than the fine segmentation of the 12 participants
who segmented only three times (M length = 7.6 s). Thus, those
who segmented four times added a level of abstraction, compared
with those who segmented three times.

Does looking time increase at breakpoints? If breakpoints
are more informative than other moments, observers should look
longer at breakpoint slides than at slides within units. Before
testing this prediction, slides needed to be categorized as falling at
or between unit boundaries. Remember that the slides in the
slideshow were taken from the midpoint of each 1-s interval of the
film. Thus, for each participant, the looking time for each slide was
binned as a unit breakpoint if the participant marked a breakpoint

' We expected that some viewers would segment the activities on more
than three levels of abstraction, and we wanted to have those levels of
segmentation available for analysis in the event that the first three levels of
segmentation did not reasonably align across participants.
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Figure 1. Mean looking time in ms, for the cleaning slideshow.

within the corresponding 1-s interval of the later segmentation
task; a slide was binned as within unit if the participant did not
mark a breakpoint within that interval. The means and standard
deviations were then calculated for each bin. Because there were
unequal numbers of slides in the two bins, the mean looking time
for each bin was divided by its standard deviation. The resulting
looking time score is essentially an effect size estimate, represent-
ing how much the mean looking time in a given bin differed from
the average looking time for all slides.” Because these looking time
scores are based on the detrended residual looking time values,
they can be negative.

Because there were no effects or interactions of activity or
segmentation order, the data were collapsed across conditions. As
predicted, participants looked longer at breakpoint slides (M =
0.18, SEM = 0.03) than within-unit slides (M = —0.02, SEM =
0.01), paired #(39) = 5.62, d = 1.48. This supports the hypothesis
that breakpoints elicit increased attention.

Participants looked longer at breakpoints, but did the amount of
looking vary as a function of segmentation level? Looking times
already binned as unit breakpoints were further binned as fine,
intermediate, or coarse breakpoints. Because people identified
coarse units that were composed of intermediate units and inter-
mediate units that were composed of fine units, there was often
overlap among breakpoints. For example, a slide corresponding to
a coarse breakpoint was also likely to correspond to both an
intermediate breakpoint and a fine breakpoint. To ensure indepen-
dence of the bins, looking times were categorized at the highest
level of organization. For example, if a looking time corresponded
to both coarse and intermediate breakpoints, it was binned only as
a coarse breakpoint. This procedure did not change the overall
pattern or reliability of the results reported here.

Because there were no effects or interactions of activity or
segmentation order, the data were collapsed across conditions. A
repeated-measures ANOVA with segmentation level (fine, inter-
mediate, coarse) as a factor revealed that looking time varied
significantly with segmentation level, F(1.7, 64.8) = 5.43, MSE =
0.13, np2 = .12. This effect was characterized by a linear trend:
Looking times were longest for coarse breakpoints (M = 0.35,
SEM = 0.09), followed by intermediate breakpoints (M = 0.22,
SEM = 0.05) and then fine breakpoints (M = 0.11, SEM = 0.03),
F(1, 39) = 823, MSE = .14, 1> = .17.

Does physical change increase with breakpoints? A simple
explanation for participants looking longer at breakpoints than at
within-unit slides would be that breakpoints looked somehow
aberrant (e.g., blurry or containing unnatural-looking body pos-
tures). However, as Figure 2 shows, visual inspection of the slides

reveals no obvious, peculiar characteristic of breakpoint slides that
would draw attention, compared with within-unit slides. So what
sets breakpoint moments apart from other moments? In the next
analysis, we explored whether breakpoint slides corresponded to
heightened amounts of relative physical change, compared with
ordinary moments. The makeup slideshow was excluded from this
analysis because it was determined (after data had been collected)
that many of the slides had digital “scratches”—irregularities in
small groups of pixels on the screen. The scratches were an
unintended side-effect of encoding the digital video at too high a
compression level and introduced unacceptable levels of noise into
the change calculations.

For the remaining three activities, the change values were first
compared across activities for differences. The activities did differ
on the change measure, F(2, 651) = 253.85, MSE = 9.61 X 10'",
mM,> = .44, with the highest values in cleaning (M = 6.32 X 10°,
SEM = 1.07 X 10°), followed by breakfast (M = 5.32 X 105,
SEM = 5.52 X 10*) and then TV cart (M = 4.17 X 10°, SEM =
3.96 X 10%. This makes sense because in cleaning, the actor
moved about a room making many different whole body move-
ments; in TV cart, the actor was stationary at a table, moving parts
with his arms. Activity did not interact with any of the effects
reported next, so the change values were standardized to equate the
activities and for ease of interpretation.

The standardized change values for each slide were categorized
as falling at breakpoints or within-units using the same binning
procedure used for looking times. Change values binned as break-
points were further binned as coarse, intermediate, or fine break-
points. The mean change value for each bin was then adjusted by
dividing it by its standard deviation. The resulting number is the
final change index for each bin.? Breakpoint slides corresponded to
greater amounts of change (M = 0.24, SEM = 0.04) than within-
unit slides (M = —0.14, SEM = 0.03), paired #(29) = 7.25,d =
2.08. Because the change index was based on standardized data,
the average change per slide was 0. This means that change at
breakpoints was higher than average and that change within-units
was lower than average. Figure 3 shows an example from the
cleaning slideshow. The finding of greater physical change at
breakpoints substantiates previous work with other stimuli and
other measures of change (e.g., Hard et al., 2006).

Change indices also varied significantly as a function of seg-
mentation level, F(1.24, 36.06) = 9.28, MSE = 3.89, np2 = .24.
There was a significant linear trend, such that coarse breakpoints
had the highest change index (M = 0.71, SEM = 0.16), followed
by intermediate breakpoints (M = 0.25, SEM = 0.05) and then fine
breakpoints (M = 0.19, SEM = 0.04), F(1, 29) = 11.38, MSE =
4.03, np2 = .28.

The joint time course of looking and physical change. Un-
til now, the analyses have compared breakpoints with dwell time

2 The reported differences in looking time between breakpoints and
within units, and among breakpoints at different levels, were significant
even if the means for each bin were not divided by their standard devia-
tions.

3 The reported differences in physical change between breakpoints and
within units, and among breakpoints at different levels, were significant
even if the means for each bin were not divided by their standard devia-
tions.



6 HARD, RECCHIA, AND TVERSKY

Figure 2. Example slides from each slideshow (from top to bottom:
cleaning, breakfast, makeup, and TV cart). On the left are slides that had
a high likelihood of being binned as coarse breakpoints in Experiment 1.
On the right are slides that were consistently binned as within-unit slides.
Black boxes over the actors’ faces are used here and in later figures to
conceal the actors’ identities. These boxes are used solely for the purposes
of this publication and were not present in the original slideshow shown to
participants.

and with change. Now we examine the time course of looking and
physical change before and after breakpoints at various levels. We
analyzed a 6-s window of time surrounding breakpoints for each
participant.*

For each participant, we created new bins for the looking times
and change values. These bins corresponded to the three slides
preceding a coarse breakpoint slide and the three slides following
it. Bins were also created for slides surrounding intermediate and
fine breakpoint slides. For each participant, looking time and
physical change measures were calculated for each bin by deter-
mining the average looking time and change value for all slides in
that bin and dividing those averages by the standard deviations for
that bin to obtain a looking time score and change index.

The results are shown in Figure 4. For coarse breakpoints,
looking time gradually increased several slides prior to a break-
point, peaked at the breakpoint, and then tapered off for several
slides thereafter. This pattern was reliably characterized by a
quadratic function, F(1, 39) = 6.38, MSE = 0.28, np2 = .14. This
quadratic pattern was also reliable for intermediate, F(1, 39) =
5.15, MSE = 0.14, npz = .12, and fine breakpoints, F(1, 39) =

5.38, MSE = 0.05, npz = .12. The temporal course of physical
change was globally similar to the temporal course of looking
time. Although the peak of physical change was at the coarse
breakpoint, change started to be visibly greater in the slide pre-
ceding the breakpoint and tapered off for several slides thereafter.
Similarly, this pattern was reliably characterized by a quadratic
function, F(1,29) = 14.14, MSE = 0.48, ,qu = .33. This quadratic
pattern was also reliable for intermediate, F(1, 29) = 12.71,
MSE = 0.04, np2 = .31, and fine breakpoints, F(1, 29) = 6.34,
MSE = 0.04, np2 = .18. For both looking time and physical
change, the relative differences between coarse, intermediate, and
fine levels of segmentation appeared to be highly consistent in the
window of time surrounding a breakpoint.

Despite their striking similarities, the curves for looking time
and physical change diverge slightly before breakpoints. Both
looking time and the change index increase prior to breakpoints,
but looking time appears to increase several slides prior to in-
creases in physical change. Figure 4 suggests that looking time
started to increase three slides (seconds) prior to a breakpoint,
whereas physical change started to increase only one slide before
the breakpoint.

Relating change to looking time. The previous analyses
showed that physical changes in the behavior stream, like looking
time, increased at breakpoints and increased more at coarser levels
of segmentation. The previous analyses also showed similar time
courses for looking time and physical change. Indeed, the change
index for each slide reliably correlated with looking time for that
slide for 20 of the 30 participants. On average, the correlations for
each participant between looking time and change were not large
(M = .19, SEM = .04) but were significantly different from 0, one
sample t = 4.77. This means that people generally looked longer
at slides that reflected more change. The low correlations could,
among other possible causes, be due to the fact that looking time
started to increase quite a bit prior to breakpoints and prior to
increases in the change measure. This discrepancy prompted fur-
ther analyses: To what extent does change account for looking
time?

A series of regression analyses were performed to find out. For
each slide in the slideshows breakfast, cleaning, and TV cart, three
values were calculated. First, the mean looking time was deter-
mined by pooling and averaging the looking times of the 10
participants who viewed that slide. These mean looking times were
then transformed with a log,, function to reduce positive skew-
ness, and the collection of mean looking times for each slideshow
were detrended by fitting a power function and extracting the
residuals. Second, the overall likelihood that a given slide was
selected as a breakpoint was calculated. For each participant, the
number of breakpoints corresponding to a given slide was divided
by that participant’s total number of breakpoints. These values
were summed across all participants who viewed that slide to yield
the total likelihood that a slide was selected as a breakpoint. The
same process was used to determine the likelihood of being se-

* This analysis was performed separately for coarse, intermediate, and
fine breakpoints. As for the previous analyses of looking time and physical
change, we analyzed only intermediate breakpoints that did not overlap
with coarse breakpoints and only fine breakpoints that did not overlap with
either coarse or intermediate breakpoints.
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Figure 3. Because breakpoints involve reorientations of the actor’s body as she shifts from one goal to the next,
the difference between a breakpoint slide (top right) and its immediately preceding slide (top left) is greater than
the difference between two adjacent within-unit slides (bottom).

lected as a fine, intermediate, or coarse breakpoint. Third, the
change value for that slide relative to the previous slide was
calculated. All calculations just described were then standardized
for each film, and submitted to regression analysis.

A first series of regression analyses addressed whether physical
change accounts for why observers look longer at breakpoints
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Figure 4. A: Mean detrended log looking time score in the preceding and
subsequent slides to breakpoints. B: Standardized change index in the
preceding and subsequent slides to breakpoints.

overall. First, we confirmed that at the group level, the likelihood
that a slide was selected as a breakpoint positively predicted the
mean looking time for that slide (R2 = .08, B = .29), «(1) = 7.73.
The change value for a given slide also positively predicted mean
looking time (R* = .11), B = .33), (1) = 9.06, as well as the
likelihood that a slide was selected as a breakpoint (R> = .11, =
.33), #(1) = 8.91. Given the relation among these three variables,
the next question was whether change accounts for why observers
look longer at breakpoints. If so, then the likelihood that a slide
was selected as a breakpoint should not predict mean looking time
when change is included in the analysis as an independent variable.
This was not the case; even controlling for change, the likelihood
that a slide was selected as a breakpoint significantly predicted
looking time (B = .20), #(1) = 5.25, and explained significant
additional variance (change R* = .04), F(1, 651) = 27.61. This
implies that quantity of physical change, as measured by our crude
technique, is a significant contributor to looking time at break-
points but cannot account for all of it.

Although physical change does not entirely account for looking
time overall, can it account for looking time specifically at fine,
intermediate, or coarse breakpoints? Examination of the individual
contributions of fine, intermediate, and coarse breakpoints to mean
looking time indicated that at the group level, fine breakpoints
predicted mean looking time (R* = .02, B = .13), #(1) = 3.45, as
did intermediate (R> = .03, B = .18), #(1) = 4.53, and coarse
(R* = .07, B = .26), #(1) = 6.87, breakpoints. At the group level,
the change value for each slide significantly predicted the likeli-
hood that a slide was selected as a fine (R* = .05, B = .23), #(1) =
5.96, an intermediate (R*> = .03, B = .19), #(1) = 4.80, or a coarse
(R* = .08, B = .28), #(1) = 7.31, breakpoint. Controlling for
change, the likelihood that a slide was a fine breakpoint did not
predict looking time, #(1) = 1.61, p = .11, but the likelihood that
a slide was an intermediate breakpoint did (f = .12), #(1) = 3.13),
and did explain significant additional variance in looking time
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(change R* = .01), F(1, 651) = 9.79. The likelihood that a slide
was a coarse breakpoint also remained a significant predictor of
looking time controlling for change (B = .18), #(1) = 4.81, and
explained significant additional variance in looking time (change
R> = .03), F(1, 651) = 23.13. These results indicate that partici-
pants looked longer at intermediate and coarse breakpoints only
partly because of greater physical change, as it was measured here.

In the data for individual participants, looking time at coarse
breakpoints was greater than was looking time at intermediate
breakpoints. Was this solely because coarse breakpoints involved
more physical change than did intermediate breakpoints? Accord-
ing to the regression coefficients reported above, coarse break-
points did lead to larger increases in looking time than did inter-
mediate breakpoints, even controlling for change. Specifically, if
the number of coarse breakpoints selected for a given slide in-
creased by 1 standard deviation, then the mean looking time for
that slide increased by 0.18 of a standard deviation. Increasing the
number of intermediate breakpoints selected for a given slide by 1
standard deviation only increased mean looking time by 0.12 of a
standard deviation. Although these regression coefficients offer
only a rough approximation of how much intermediate and coarse
breakpoints influence looking time, their values suggest that par-
ticipants looked longer at coarse breakpoints than at intermediate
breakpoints, even controlling for change.

Together, these analyses show that although looking time tracks
physical change, looking times and the physical change measure
deviate in two ways. First, looking time at coarse and intermediate
breakpoints is only partially explained by physical change. Sec-
ond, looking time increased for the slides prior to breakpoints and
prior to increases in physical change. The physical change measure
captures only bottom-up quantitative information and captures that
only roughly. The discrepancies between physical change and
looking time may suggest limitations to our measure of physical
change or that more subtle or conceptual changes at breakpoints
also affect looking time.

Does looking time at breakpoints predict recall?  Partici-
pants’ free recall of the slideshow was coded by Gabriel Recchia
by counting the number of actions reported. In some cases, an
action was indicated by a phrase with a single verb and direct
object, as in “she ate a banana.” In other cases, multiple actions
were conveyed in a single phrase, as in “she took three bites.”
Participants were credited for as many actions as the description
conveyed. For example, “she took three bites” was coded as three
actions. On average, participants recalled 23.43 actions (SEM =
1.62). One participant recalled 51 actions, more than 2.5 standard
deviations above the mean number of actions recalled. This par-
ticipant was excluded from the following analysis as an outlier.
Errors in recall were not analyzed because they were so rare: Only
11 out of 863 (1.3%) total recalled actions could be considered
errors.

Participants who looked longer at coarse breakpoints recalled
significantly more actions later, 7(39) = .46. Total looking time
across the slideshow did not correlate with recall, #(39) = .23, p =
.16, nor with looking time at coarse breakpoints, #(39) = —.03,
p = .87; thus the relation between coarse breakpoint looking times
and recall was not because participants with long coarse break-
point looking times spent more time with the slideshow overall.
Looking time scores at other breakpoints and within units also did
not predict recall. This result indicates that selectively looking at

coarse breakpoints helped participants build a memorable repre-
sentation of ongoing action. But why did this occur? Did looking
time at coarse breakpoints reflect encoding of coarse-level actions,
or were coarse breakpoints convenient resting points for partici-
pants to consciously rehearse actions that had occurred up to that
point? The latter interpretation seems unlikely because the average
looking time to coarse breakpoint slides was only slightly over a
second (M = 1,028 ms, SEM = 115.2 ms), compared with the
average time per slide of slightly less than a second (M = 795 ms,
SEM = 68.7 ms). One second seems insufficient to actively
rehearse a long list of actions. Rather, it seems that selectively
looking at coarse breakpoints augmented high-level understanding
and integration of the action sequence.

Does looking time at breakpoints predict hierarchical seg-
mentation?  If looking selectively at coarse breakpoints facili-
tates understanding and integration, then it may also facilitate
perceiving hierarchical structure during the segmentation task.
Hierarchical segmentation was assessed with both quantitative and
qualitative indices. The quantitative index, alignment, is based on
the premise that when coarse and fine units of action are hierar-
chically related, their boundaries coincide in time (Zacks, Tversky,
& lyer, 2001). Boundaries of coarse units, like putting on the top
sheet, should coincide with the boundaries of relevant subunits,
like tucking in the (last) corner. Here, we adopted the continuous
method for assessing alignment developed by Zacks, Tversky, and
Iyer (2001) and, following Hard et al. (2006), calculated a set of
alignment scores for each participant. A detailed description of the
calculations appears in Appendix B. Separate alignment scores
were calculated between intermediate and coarse units
(intermediate-coarse alignment) and between fine and intermediate
units (fine—intermediate alignment). Intermediate—coarse align-
ment (M = .63, SEM = .04) was significantly greater than fine—
intermediate alignment (M = .53, SEM = .04), paired #39) =
2.10, d = 0.40. This difference is probably due to the fact that fine
breakpoints occur more frequently than do coarse breakpoints, so
that segmenting activities into fine units is more demanding and
error-prone than segmenting activities into coarse units, decreasing
alignment.

Table 1 shows the correlations between looking time at break-
points and subsequent alignment scores. Participants who looked
longer at fine breakpoints later had higher fine—intermediate align-
ment. Participants who looked longer at within-unit slides, in
contrast, had lower fine—intermediate alignment. Together, these
findings suggest that participants who focus their attention selec-
tively on breakpoints later segment the action sequence in a more
organized fashion.

Surprisingly, looking time at intermediate and coarse break-
points predicted neither fine—intermediate alignment nor
intermediate—coarse alignment. Why does looking time at fine
breakpoints, but not intermediate and coarse breakpoints, predict
alignment? This pattern of results may be interpretable if we
consider that high alignment scores likely reflect high reliability in
breakpoint perception, that is, a tendency to mark fine breakpoints
at reliably the same temporal location as corresponding break-
points at coarser levels. Participants who pay close attention to
activity at a fine level may be more tuned to specific changes in the
flow of action and use those changes consistently as indicators of
breakpoints at any level.
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Table 1
Correlation Coefficients Between Looking Time and Measures of Alignment and Enclosure
Fine—intermediate Intermediate—coarse Average
LT Alignment Enclosure Alignment Enclosure Alignment Enclosure

Coarse LT .16 277 14 35" 18 45"
Intermediate LT —.15 .05 —.20 24 —.21 12
Fine LT 46" .18 .05 .01 297 18
Within-unit LT —.44" .03 -.09 —.13 -.30" —.06

Note. Looking time (LT) scores were measured at breakpoints (coarse, intermediate, and fine) in the slideshow
task, whereas alignment and enclosure scores were measured during the segmentation task.

Tp<.10. *p < .05

The qualitative index of hierarchical segmentation, enclosure, is
based on the premise that when coarse and fine units of action are
hierarchically related, coarse units contain fine ones. If so, bound-
aries of coarse units should be marked after or outside of, that is,
enclosing, boundaries of fine units. A detailed description of
enclosure calculation appears in Appendix B. Enclosure was cal-
culated for each participant between intermediate and coarse
breakpoints (intermediate—coarse enclosure) and between fine and
intermediate breakpoints (fine—intermediate enclosure).
Intermediate—coarse enclosure (M = .65, SEM = .03) was signif-
icantly higher than was fine—intermediate enclosure (M = .55,
SEM = .03), paired #39) = 2.20, d = 0.51. This finding may again
be explained by the heightened demands and noisier data for
fine-level segmentation.

Table 1 shows the correlations between looking time scores at
breakpoints and later enclosure scores. In contrast to alignment
scores, enclosure scores correlated with looking time at coarse
breakpoints but not at finer breakpoints. An interpretation of this
finding is that looking time at coarse breakpoints is related to the
integration of component actions into larger wholes, leading ob-
servers to later perceive coarser units of action as containing the
finer units.

How was participants’ memory of actions from the slideshow
related to their later segmentation patterns? The number of actions
that participants recalled was significantly correlated with average
enclosure score, 7(37) = .36, and marginally correlated with av-
erage alignment scores, #(37) = .29, p = .08. These findings
reinforce that better memory for an activity is associated with a
more organized perception of that activity in an explicit segmen-
tation task.

Discussion

Organized human activity unfolds continuously in time, yet is
thought of as segments that are organized hierarchically. But is
online perception of human activity segmented and hierarchical?
Previous work suggested that it is (Zacks, Braver, et al., 2001;
Zacks, Tversky, & Iyer, 2001), and the present results add sub-
stantially to that evidence. In the present study, participants looked
at slides depicting a human activity at their own pace, yielding a
measure of looking time or attention. Later, they recalled the
actions they had viewed and then segmented films of the same
activity into breakpoints at several levels. Slide-to-slide change
was also computed. Earlier research suggests that breakpoints
involve the convergence of perceptual and conceptual changes in

action. Thus, we predicted that breakpoints contain more informa-
tion to process and so should be marked at moments of greater
change and should be looked at longer. Support for these ideas was
striking: Change in action and looking time rose and fell together,
with breakpoints marked at their peaks. What is more, both change
and attention were modulated by level within the action hierarchy:
Coarse level breakpoints involved more physical change and at-
tracted more attention than did intermediate breakpoints, and in-
termediate, more than fine level breakpoints.

The close correspondence between perceived hierarchical struc-
ture and low-level physical change also suggests that a measure of
relative physical change can serve as an excellent cue to the
hierarchical structure of the activities. This finding raises the
possibility of automatically processing films of human activity for
their perceived hierarchical organization. The deeper significance
is that automatic processing of activities based on relative physical
change would reveal not only the perceptual structure of activities
but also at least the rough outlines of the conceptual structure.

Although looking time and physical change were closely cou-
pled, especially at breakpoints, the time courses of looking time
and change diverged in a suggestive way. The second-by-second
analyses showed that prior to breakpoints, looking time began to
increase a few seconds before increases in physical change. The
fact that increases in looking time occur prior to increases in
physical change suggests that subtle changes not captured by our
change measure may be cuing an imminent goal completion and
capturing viewers’ attention in advance of the breakpoint. Actors
typically prepare for the next action as they finish the current one,
shifting their gaze to the next object to be acted on (Mennie,
Hayhoe, & Sullivan, 2007). Directing the gaze to an object is an
early cue of intention to act on that object (Baird & Baldwin, 2001;
Pierno et al., 2006). Experienced observers of human action are
likely to notice those subtle yet reliable cues to an upcoming
transition and may increase attention in anticipation of the next set
of actions.

The correspondences between looking times and later measures
of hierarchical segmentation suggest that looking times can serve
as an implicit measure of segmentation and of hierarchical per-
ception of human action. Looking time was compared with two
indices of hierarchical segmentation: alignment and enclosure.
Each of these measures correlated with looking time at break-
points, but alignment was more strongly correlated with looking
time at fine breakpoints, and enclosure was more strongly corre-
lated with looking time at coarse breakpoints. Alignment measures
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how breakpoints of coarser and finer units fall closely in time,
irrespective of whether finer breakpoints are perceived before or
after corresponding coarser breakpoints. Degree of alignment may
reflect degree of consistency of the features participants con-
sciously use to mark breakpoints. High consistency may be asso-
ciated with greater attention to fine levels of detail and thus longer
looking at fine breakpoints. In contrast, enclosure measures a
particular temporal ordering of closely aligned breakpoints: Larger
units of action cannot be complete until all the component actions
are complete, such that finer unit boundaries fit within intermedi-
ate unit boundaries that fit within coarse unit boundaries. We
propose that such temporal relations reflect integration of related
actions into chunks. Chunking of actions may be associated with
greater attention to the overarching goals of the activity and thus
longer looking at coarse breakpoints. An implication of this anal-
ysis is that degree of enclosure may reflect degree of hierarchical
organization better than degree of alignment. Further research is
needed to explore that possibility.

Importantly, selective looking at coarse breakpoints and not
total looking time was associated with greater recall. These find-
ings suggest that techniques that increase hierarchical perception
of ongoing activity should increase learning and memory. As such,
the findings have important implications for action learning, which
typically occurs through observation and imitation.

Experiment 2: Breakpoints Are Looked at Longer out
of Context

So far, the evidence confirms that breakpoints are significant
because they are informative within the context of the flow of
action—they correspond to peaks of physical change that demand
attention. Breakpoints can thus be likened to mountain peaks of
new information separated by valleys. But are breakpoints also
informative out of context? As suggested earlier, breakpoints are
also bridges from one action to another. Because transitions be-
tween actions can involve considerable overlap of those actions
(Mennie, Hayhoe, & Sullivan, 2007), breakpoints can simultane-
ously capture the completion of one action and the initiation of the
next. In such moments of transition, the actor’s body and objects
being acted on might take on configurations that are informative
even when presented in isolation. If so, then breakpoints should
capture attention even out of context.

Our first goal in this next experiment was to examine the role of
temporal context in looking time by scrambling the order of the
action sequences for half the participants. A second goal was to
test whether viewers attend selectively to breakpoints, even when
the breakpoints are defined by other people and occur as frequently
as within-unit moments. New slideshows were constructed from
the previous ones based on the data collected in Experiment 1. Half
the slides were ones judged by Experiment 1 participants as
breakpoint moments at each of the three segmentation levels, and
half were ones judged as within-unit moments. New participants
viewed these slideshows, with half seeing the slides in chronolog-
ical order and the other half seeing the slides in random order. If
breakpoints are especially informative only in context, then break-
points should attract longer looking times under chronological
presentation but not under scrambled presentation. On the other
hand, if breakpoint moments are inherently distinctive and infor-

mative, they should attract longer looking times even in the ab-
sence of coherent temporal sequencing.

Method

Stimuli. The same four activities were used in this study as in
Experiment 1. Sixty slides from each activity were selected based
on the segmentation data from Experiment 1, so that exactly half
(N = 30) corresponded to breakpoints and half corresponded to
within-units (N = 30). Slides were selected based on the average
likelihood that each slide had been selected by participants in
Experiment 1 as a breakpoint. The 10 slides with the highest
likelihood of being selected as a coarse, intermediate, or fine
breakpoint in Experiment 1 were used as the coarse, intermediate,
and fine breakpoint slides (respectively) in this study. The cate-
gories were mutually exclusive; that is, a slide could not be
selected for the new slideshow as an intermediate breakpoint if it
had already been selected as a coarse breakpoint. Slides could not
be fine breakpoints if already selected as intermediate or coarse
breakpoints. All slides selected for the present study had average
likelihoods at least 1 standard deviation above the mean. Within-
unit slides were selected to be the 30 slides with the lowest
likelihood of being selected as any breakpoint (the sum of coarse,
intermediate, and fine). Before being used in the experiment, the
slides selected for the makeup slideshow were checked to see
whether they were free of digital “scratches,” so that they could be
included in analyses of physical change. Only six slides out of 60
slides contained small scratches (three intermediate breakpoint
slides and three within-unit slides), so we decided to include them
and the makeup slideshow in the experiment and in further anal-
yses. We did confirm, however, that including or excluding these
six slides from the analyses did not change the pattern or reliability
of the results.

Participants and design.  Forty Stanford undergraduates par-
ticipated in the study in exchange for pay or course credit. One
participant did not follow instructions and was replaced. The
experimental design was a 4 X 4 X 2 mixed factorial design.
Presentation order (scrambled, chronological) was varied between
subjects. Slide type (fine breakpoint, intermediate breakpoint,
coarse breakpoint, and within unit) was varied within subjects.
Because the slideshows for this study were shorter than the ones
used in Experiment 1, participants were asked to watch all four,
rather than just one. Thus, activity (cleaning, breakfast, makeup,
and TV cart) was also varied within subjects.

Procedure. Participants were seated at a computer and told
that they would view several slideshows. Participants were told
that immediately after a slideshow ended, the computer would
prompt them to write down as many actions as they could remem-
ber before moving on to the next slideshow. They were asked not
to write down actions while watching the slideshow and not to
change answers after moving to the next slideshow. Participants in
the scrambled condition were told that the slides would be in a
scrambled sequence and that they should try their best to make
sense of them. As before, slideshow viewing was self-paced, and
participants pressed the spacebar to advance to the next slide.

Participants then viewed all four slideshows (cleaning, break-
fast, makeup, or TV cart) in a randomized order. In the chrono-
logical condition, slides within each slideshow were presented
chronologically. In the scrambled condition, the order of slides
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within each slideshow was randomized for each individual partic-
ipant. Immediately after each slideshow, the computer prompted
participants to recall as many actions as they could remember from
that slideshow before moving on to the next one. The instructions
for recall were the same as in Experiment 1.

Results

How does presentation order affect looking time?  As for
the first experiment, the looking time data were first transformed
with a log,, function and detrended with power functions for each
individual participant. Looking times were again well described by
a power function, accounting for an average of 29% of the variance
in looking time in the chronological condition (SEM = .03) and
32% of the variance in the scrambled condition (SEM = .03). The
variance accounted for by the power function did not differ sig-
nificantly between the two conditions, #38) < 1. From the de-
trended data, average looking times were then calculated for each
participant. Separate average looking times were calculated for
fine breakpoints, intermediate breakpoints, coarse breakpoints, and
within units and were averaged across the four slideshows. Unlike
in Experiment 1, looking time scores were not calculated by
dividing these average looking times by their standard deviation
because there were equal numbers of breakpoint and within-unit
slides, and equal numbers of coarse, intermediate, and fine break-
point slides.

Average looking times were first submitted to a mixed factorial
ANOVA with slide type (breakpoint, within unit) as a within-
subjects factor and presentation order (chronological, scrambled)
as a between-subjects factor. First, participants looked longer at
breakpoint slides (M = 0.05, SEM = 0.005) than at within-unit
slides (M = —0.03, SEM = 0.004), F(1, 38) = 121.15, MSE =
.001, nlzj = .76. Second, there was a small main effect of presen-
tation order, F(1,38) = 7.37, MSE = 2.59 X 107>, m_ = .16, such
that participants had higher looking times in the chronological
condition (M = 0.0093, SEM = 0.00084) than in the scrambled
condition (M = 0.0062, SEM = 0.00077). This effect requires
clarification: Recall that the analyzed looking times for each slide
are transformed and detrended versions of the original looking
time for that slide. Although participants in the chronological
condition had higher transformed and detrended looking times on
average, analysis of the raw looking times indicated that partici-
pants in the scrambled condition looked at each slide on average
nearly twice as long (M = 2,193 ms, SEM = 300 ms) as partici-
pants in the chronological condition (M = 1,106 ms, SEM = 97
ms), #(38) = 3.45,d = 1.12.

If the raw looking times were, on average, longer in the scram-
bled condition than in the chronological condition, then why did
the detrended looking times, on average, appear to be longer in the
chronological condition? Recall that the detrending process re-
moves variance that is attributable to the overall decrease in
looking time as participants become accustomed to the slideshow.
What is left after the detrending is variance attributable to other
factors, including whether the slide was a breakpoint or not. In the
chronological slideshow, the high detrended looking times specif-
ically at breakpoints seemed to drive up the average detrended
looking times in that condition. This was observed in an interaction
between presentation order and slide type, F(1, 38) = 36.52, nﬁ =
49. As evident in Figure 5, the difference in looking time between
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Figure 5. Mean looking time for slides categorized as breakpoints and as
within units in Experiment 2, as a function of presentation order. Error bars
reflect the standard error of the mean. A: The top graph shows the
transformed and detrended versions of the looking times that are reported
in the analyses. B: The bottom graph shows the raw looking times in
milliseconds.

breakpoint slides and within-unit slides was greater in the chrono-
logical condition, F(1, 19) = 102.89, MSE = 1.34 X 107°, m7 =
.84, than in the scrambled condition, F(1, 19) = 20.97, MSE =
5.59 X 1074, ni = .53. Analysis of the looking time data for
individual participants indicated that all 20 participants in the
chronological condition had longer looking times at breakpoints
than within units. Sixteen of the 20 participants in the scrambled
condition showed this difference. The difference in the frequencies
of participants showing this effect significantly differed between
conditions, x*(1, N = 40) = 4.44. We confirmed that the effect of
slide type and other subsequently reported effects on looking time
held, whether analyzing the transformed and detrended looking
times or raw looking times.

Mean looking times for breakpoint slides were next submitted to
a mixed factorial ANOVA with segmentation level (coarse, inter-
mediate, fine) as a within-subjects factor and presentation order
(chronological, scrambled) as a between-subjects factor. In Exper-
iment 1, looking time varied as a function of segmentation level.
This was true in the present study also, F(2, 76) = 37.98, MSE =
1.83 X 1077, m7 = .50. Looking time at breakpoints showed a
linear trend, such that coarse breakpoints were looked at longest
M = 0.09, SEM = 0.01), followed by intermediate (M = 0.04,
SEM = 0.01) and then fine breakpoints (M = 0.01, SEM = 0.01),
F(1, 38) = 51.99, nﬁ = .58.

The effect of segmentation level interacted with presentation
order, F(2, 76) = 17.69, 7]12) = .32 (see Figure 6). Separate
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Figure 6. Mean looking time at breakpoints in Experiment 2 as a function
of segmentation level and presentation order. Error bars reflect the standard
error of the mean.

analysis of the two presentation order conditions revealed a
strong effect of segmentation level in the chronological condi-
tion, F(2, 38) = 39.64, MSE = 2.45 X 1077, m> = .68. This
effect was linear; looking times at coarse breakpoints (M =
0.14, SEM = 0.01) were highest, followed by intermediate
(M = 0.06, SEM = 0.01) and fine breakpoints (M = 0.002,
SEM = 0.01), F(1,19) = 51.93, MSE = 3.72 X 10", 2 = .73.
There was a weaker effect of segmentation level in the scram-
bled condition, F(2, 38) = 3.81, MSE = 1.21 X 1073, 'r]f, =.17.
This effect was also characterized by a linear trend, albeit a
weaker one, F(1, 19) = 4.35, MSE = 1.47 X 103, p = .05, 'r]ﬁ
= .19: As Figure 6 shows, looking times were highest at coarse
breakpoints (M = 0.04, SEM = 0.01), but intermediate (M =
0.01, SEM = 0.01) and fine breakpoints (M = 0.02, SEM =
0.01) had similar looking times. Analysis of the trends for
individual participants indicated that 15 of the 20 participants in
the chronological condition showed the predicted linear pattern
of looking time (coarse > intermediate > fine), but only four of
the 20 participants in the scrambled condition showed the same
pattern. The difference in the frequencies of participants show-
ing this effect significantly differed between conditions, x*(1,
N = 40) = 12.13.

How does presentation order affect change? Experiment 1
showed that breakpoints corresponded to relatively large amounts
of physical change and that these changes increased with level of
organization. Was this true in Experiment 2 as well, in which each
participant saw only a sample of slides from Experiment 1 and in
which another group of participants defined the breakpoints? Are
breakpoint slides more physically different from the previous slide
than ordinary slides are, even in scrambled order?

A consideration before analyzing physical change is that the
slides in this experiment were only a sampling of still frames from
the original slideshow used in Experiment 1. Whereas the temporal
distance between successive slides in Experiment 1 was necessar-
ily 1 s, the temporal distance between successive slides in this
slideshow could have been a second or much longer. It is possible
that in this new slideshow, the breakpoint slides that we selected
might, on average, have been further away from the preceding
slide, in terms of true temporal distance, than were within-unit
slides. If so, then breakpoint slides in the scrambled condition
might be physically more different from their preceding slide

simply because they were further away in time. We checked this
by calculating the amount of true time (in s) separating each slide
used in the reduced Experiment 2 slideshow from its preceding
slide, based on the complete version of the slideshow in Experi-
ment 1. There were no differences between breakpoint slides (M =
2.7, SEM = 0.21) and within-unit slides (M = 2.5, SEM = 0.19),
#(234) < 1, and no differences among breakpoint slides at different
levels of abstraction, F(3, 235) < 1.

In Experiment 1, changes at breakpoint and within-unit slides
were calculated individually for each participant because each
participant identified subtly different breakpoints within the se-
quence. In the present study, each participant in the chronological
condition viewed exactly the same sequence of within-unit and
breakpoint slides, whereas each participant in the scrambled con-
dition viewed a different random sequence. Thus, a different
analysis of change was required. Each slide was treated as a
“subject,” and a chronological change value for each slide was
calculated with the same technique used in Experiment 1. For each
slide, a change value was then calculated for each participant in the
scrambled condition, based on the specific, random temporal or-
dering of slides that the participant saw. The slides and their
corresponding change values were then reordered in the correct
chronological sequence and averaged across all of the participants
in the scrambled condition, yielding an average scrambled change
value for that slide.

Change values were standardized for each activity for ease of
interpretation and because, as in Experiment 1, the change values
varied across activity, both for the chronologically presented slide-
shows, F(3, 231) = 13.00, MSE = 2.90 X 10", m> = .14 and the
scrambled slideshows, F(3, 231) = 106.74, MSE = 1.48 X 10"},
T]i = .58. As before, activity did not interact with any of the effects
presented here. The standardized change values were submitted to
a mixed factorial ANOVA, with presentation order (chronological,
scrambled) as a within-subjects factor and slide type (breakpoint,
within unit) as a between-subjects factor. Standardizing the change
values equates the mean amount of change within the scrambled
and chronological conditions. Notably, the mean amount of change
in the scrambled and chronological conditions was not equal.
Overall, there was more change in the scrambled condition (M =
2,333,213; SEM = 38,475) than in the chronological condition
(M = 1,569,775, SEM = 37,779), paired #(234) = 23.58,d = 1.31.
This was expected given that for each slide in the chronological
sequence, the preceding slide corresponded to a point in the
original video about 2.6 s away in time, on average. For each slide
in the scrambled sequence, the preceding slide could correspond to
points in time hundreds of seconds away, when the actor’s body
position was likely dramatically different. This is also consistent
with the finding of increased looking time overall for the scram-
bled slides.

Analysis of the standardized change values indicated that across
the two presentation orders, breakpoint slides corresponded to
greater amounts of change (M = 0.41, SEM = 0.09) than within-
unit slides (M = —0.41, SEM = 0.07), F(1, 233) = 42.85, MSE =
1.33, ni = .16. This effect interacted with presentation order, F(1,
233) = 8.51, MSE = 0.38, nﬁ = .04 (see Figure 7). Separate
analysis of the chronological and scrambled change values indi-
cated a much larger effect of slide type in the chronological
condition (for breakpoints: M = 0.44, SEM = 0.09; for within
units: M = —0.43, SEM = 0.08), F(1, 233) = 54.39, MSE = 0.80,
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Figure 7. Mean standardized change values in Experiment 2 as a function
of slide type and presentation order. Error bars reflect the standard error of
the mean.

ni, = .19, than in the scrambled condition (for breakpoints: M =
0.26, SEM = 0.10; for within units: M = —0.26, SEM = 0.07),
F(1, 238) = 18.35, MSE = 0.91, *r]lf = .07. Thus, even when
presented in scrambled order, breakpoint slides contained rela-
tively large changes relative to other parts of the behavior stream.
This suggests that breakpoint slides are distinctive—they look
more different from a randomly selected slide than within-unit
slides do, even when the numbers of breakpoint and within-unit
slides are equated.

Change values for breakpoint slides were next submitted to a
mixed factorial ANOVA, with presentation order (chronologi-
cal, scrambled) as a within-subjects factor and segmentation
level (coarse, intermediate, fine) as a between-subjects factor.
There was a main effect of segmentation level, F(2, 113) =
4.39, MSE = 1.59, nﬁ = .07. Coarse breakpoints had the highest
change (M = 0.83, SEM = 0.17), followed by intermediate
breakpoints (M = 0.34, SEM = 0.14) and then fine breakpoints
(M = 0.06, SEM = 0.14).

There was also a significant interaction between segmentation
level and presentation order, F(2, 113) = 4.17, MSE = 0.37, ni =
.06 (see Figure 8). Separate analysis of the chronological and
scrambled conditions indicated a reliable effect of segmentation
level in the chronological condition, F(2, 113) = 6.43, MSE =
0.83, nf, = .10, but only a marginally reliable effect in the scram-
bled condition, F(2, 117) = 2.84, MSE = 1.14, p = .06, ni =.05.
The effect in the chronological condition was well characterized
by a linear trend: Coarse breakpoints had the greatest amount of
change (M = 0.80, SEM = 0.16), followed by intermediate break-
points (M = 0.49, SEM = 0.14) and then fine breakpoints (M =
0.06, SEM = 0.15), F(2, 113) = 6.43, MSE = 0.83, n?, = .10. For
the scrambled condition, there was only a marginally reliable
linear trend, F(2, 117) = 2.96, MSE = 1.15, p = .06, ~q§ = .05:
Visual inspection of Figure 8 shows how the pattern of looking
time differed in the scrambled condition, compared with the chro-
nological condition: Coarse breakpoints had the highest degrees of
change (M = 0.59, SEM = 0.20), but intermediate breakpoints did
not have higher change (M = 0.04, SEM = 0.16) than fine
breakpoints (M = 0.16, SEM = 0.14).

The fact that breakpoints corresponded to both heightened at-
tention and heightened change, even in scrambled sequences of

slides, is surprising and suggests that breakpoint moments are
inherently distinctive. If breakpoint slides really are informative,
even out of context, are they more different from every other slide
in the slideshow? Once again using our metric for determining the
similarity of two slides, each slide in the present experiment was
compared with every other slide within the same slideshow. Be-
cause there were 60 slides in each of the four slideshows, these
comparisons yielded a set of 59 change values for each slide.
These 59 change values were averaged, yielding a single number
for each slide that represented the global difference between that
slide and all other slides in the slideshow. The global difference
values were first standardized for each activity for ease of inter-
pretation and because, as for the change values reported in Exper-
iment 1 and previously for this experiment, the average global
difference values varied across the four activities, F(3, 236) =
124.61, MSE = 1.39, nﬁ = .61. Activity did not interact with any
of the subsequent effects reported here. The standardized global
difference values were next submitted to an independent-samples
t test with slide type (breakpoint, within-unit) as a between-
subjects factor. Breakpoint slides were more different (M = 0.28,
SEM = 0.10), compared with all other slides than were within-unit
slides (M = —0.28, SEM = 0.07), #(238) = 4.61, d = 0.59. The
standardized global difference values were next submitted to a
one-way ANOVA with breakpoint type (fine, intermediate, coarse)
as a factor. This analysis indicated that the global differences
varied with segmentation level, F(2, 117) = 3.18, MSE = 1.23, nﬁ
= .05. On the basis of the pattern of data we observed for physical
change in the scrambled condition, we predicted that coarse break-
points would likely drive any effect of segmentation level on the
global difference measure. To test this prediction, two planned
contrasts were performed. The first indicated that coarse break-
points had significantly higher global differences (M = 0.64,
SEM = 0.20) than intermediate and fine breakpoints, #(117) =
2.51. The second showed that intermediate (M = 0.07, SEM =
0.17) and fine breakpoints (M = 0.14, SEM = 0.15) did not
significantly differ from one another, #(117) < 1.

Explaining looking time: A regression analysis.  Experi-
ment 1 showed that physical changes at breakpoints play a signif-
icant role in why observers look longer at breakpoints. But par-
ticipants looked at breakpoints, especially coarse breakpoints, for
reasons besides change. Was this true in Experiment 2 as well?

1.2
OFine Breakpoints

Bntermediate Breakpoints

-
L

B Coarse Breakpoints

g
®
.

© o
» [}
.

°
N
\

Standardized Change

o

1

o

[N}
L

Scrambled Chronological

Figure 8. Mean standardized change values at breakpoints in Experiment
2 as a function of segmentation level and presentation order. Error bars
reflect the standard error of the mean.
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To find out, the mean looking time in ms was determined for
each slide by pooling and averaging the looking times of the 20
participants in the chronological condition who viewed that slide.
The mean looking times for each slideshow were then transformed
with a log,, function to reduce positive skewness and were de-
trended by fitting a power function and extracting the residuals.
These values were then standardized for each slideshow and used
as the dependent measure in a regression analysis.

Whether a slide was a breakpoint or not (coded as binary: 1 or
0) significantly predicted mean looking time in the chronological
condition (R* = .18, B = .43), (1) = 7.34, as did the change value
for each slide (R* = .36, B = .60), #(1) = 11.44, and the global
difference value for each slide (R* = .15, B = 0.39), #(1) = 6.47.
Controlling for change, the global difference value no longer
predicted looking time significantly, (B = —.05), #(1) < 1. Con-
trolling for change, being a breakpoint did significantly predict
looking time (B = .21), #(1) = 3.77, and explained significant
additional variance above and beyond change (change R* = .04),
F(1, 232) = 14.20. This replicates findings from Experiment 1 that
physical change accounts for some, but not all, of the relation
between breakpoints and looking time when slides are viewed
chronologically.

Examination of the individual contributions of fine, intermedi-
ate, and coarse breakpoints to looking time indicated that at the
group level, being a fine breakpoint (coded as binary, 1 or 0) was
not a significant predictor of mean looking time (R* = 0, B =
—.004), 1(1) < 1, p = .95), but being an intermediate (R* = .02,
B = .15), #(1) = 2.39, or coarse (R* = .18, B = .43), #(1) = 7.28,
breakpoint was. Controlling for change, being an intermediate
breakpoint did not significantly predict looking time (3 = .02),
#(1) < 1, but being a coarse breakpoint did (3 = .24), #(1) = 4.46.
Being a coarse breakpoint predicted significant additional variance
above and beyond the contribution of change (change R* = .05),
F(1, 232) = 19.88. These results are consistent with those of
Experiment 1.

Did these results hold in the scrambled condition? Recall that
the 20 participants in the scrambled condition each saw the slides
in a different random sequence. Thus, before a regression analysis
could be performed, each participant’s looking times were reor-
dered so that the slides would be in chronological sequence. The
looking times for each slide were then averaged across the 20
participants in the scrambled condition and then log,, transformed
to reduce skewness. Although each individual participant’s look-
ing times were well characterized by a power function for the
specific random sequence of slides that he or she saw, once the
looking times were reordered and averaged across the 20 partici-
pants, they were no longer characterized by a power function,
making the detrending process unnecessary.” The looking time
values were then standardized for each activity and used as a
dependent measure in a regression analysis.

Whether a slide was a breakpoint did not predict mean looking
time in the scrambled condition (R*> = .01, B = .09), #(1) = 1.31,
p = .19, but change values did (R* = .03, B = .17), #«(1) = 2.70,
as did the global difference values (R* = .03, B = .18), #(1) =
2.80. Controlling for change, the global difference values did not
predict looking time, however, (B = 0.14), #(1) < 1. Thus, how
different the slides looked relative to the immediately previous
slide was the primary predictor of looking time in the scrambled
condition. Notably, the relation between change and looking time

in the scrambled condition was not as strong as in the chronolog-
ical condition (R* = .03 vs. R> = .36). This may be because in the
chronological condition, physical change was more meaningful; as
physical change in the slides increased, so did the change in the
actor’s actions and goals. This likely made it easier for observers
to detect physical changes and exploit them in processing the
activity. Additionally, change was very high between all slides in
the scrambled condition, so although breakpoints did correspond to
heightened amounts of change, these changes were probably
harder to detect.

Examination of the individual contributions of fine, intermedi-
ate, and coarse breakpoints to mean looking time indicated that at
the group level, being a fine breakpoint was not a significant
predictor of mean looking time (R* = .003, = .05), (1) < 1,p =
40, nor was being an intermediate breakpoint (R*> = .002, B =
—0.05, #(1) < 1. Being a coarse breakpoint was a marginally
reliable predictor (R2 =.01,3 =0.11),«(1) = 1.66, p = .10. None
of these were significant predictors controlling for change.

This pattern of results suggests that the looking time effects
observed in the scrambled condition were attributable to different
processes than in the chronological condition. In the chronological
condition, looking time was attributable largely to physical
changes in the behavior stream, but there was additional unex-
plained variance based on whether participants were looking at a
breakpoint, especially a coarse breakpoint. In the scrambled con-
dition, looking time had a very simple explanation: The only
significant predictor of looking time was the physical changes
between slides. No additional variance was attributable to whether
participants were looking at a breakpoint.

Does looking time predict recall? In the first study, looking
time at coarse breakpoints was correlated with later recall. Were
looking time and recall related in the present study, and did their
relation depend on presentation order? In this study, Gabriel Rec-
chia, blind to condition (chronological, scrambled), determined the
number of actions recalled for each slideshow the same way as in
Experiment 1 and then averaged across the four slideshows. In
contrast to Experiment 1, errors in recall were frequent enough to
merit analysis, which is unsurprising given that participants had to
keep track of four different activities and saw only incomplete
slides from each. Overall, participants recalled an average 13.79
correct actions for each slideshow (SEM = 0.68) and made 0.36
recall errors (SEM = 0.05). As in memory for scripts (e.g., Bower
et al., 1979), most of the recall errors (about 70%) were intrusions
consistent with the theme of the activity, like reporting that the
woman in the cleaning slideshow had opened the lid of her jewelry
box and looked inside, when she had only moved it to a shelf.
Intrusions were likely common because participants had to rely on
inferences using top-down knowledge to make sense of the incom-
plete slideshows they were observing. The remaining errors (30%)
appeared to be intrusions from the wrong slideshow, like reporting
that the woman in the cleaning slideshow had answered her cell
phone, when it was the woman in the breakfast slideshow who had
done that. Participants in the chronological condition recalled more

5 An alternative approach is to take the detrended looking times for
participants in the scrambled condition, reorder them chronologically, and
then average them across participants to get an average detrended looking
time for each slide. This approach does not change the pattern of results.
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correct actions (M = 15.13, SEM = 1.09) than did participants in
the scrambled condition (M = 12.45, SEM = 0.73), t(38) = 2.05,
d = 0.67. Participants in the scrambled condition made more recall
errors (M = 0.53, SEM = 0.08) than did participants in the
chronological condition (M = 0.18, SEM = 0.05), #(38) = 3.97,
d = 1.29.

Overall, mean looking time at breakpoints positively predicted
the number of actions recalled, r(38) = .35 (see Table 2). A
separate look at each segmentation level revealed that only looking
time at coarse breakpoints predicted recall, 7(38) = .37. Looking
time at fine and intermediate breakpoints did not predict recall,
rs(38) = —.07 and .18, respectively. Looking time within units
were marginally negatively correlated with recall, #(38) = —.30,
p = .06. Errors in recall were correlated with looking time in
several ways. First, looking time within units and at fine break-
points predicted more recall errors, rs(38) = .49 and .33, respec-
tively. Looking time at intermediate and coarse breakpoints pre-
dicted fewer recall errors, rs(38) = —.49 and —.53, respectively.

On the surface, these correlations replicate findings from Ex-
periment 1, but they must be interpreted carefully. Bear in mind
that participants in the chronological condition not only recalled
more actions and made fewer recall errors, they had longer looking
times at coarse and intermediate breakpoints and lower looking
times at fine breakpoints and within units than did participants in
the scrambled condition. These correlations might be artifacts of
differences between the chronological and scrambled conditions
rather than a reflection of a true relation between looking time and
recall. To be more confident that the correlations are not artifac-
tual, we would need to see significant correlations when control-
ling for presentation order or when analyzing the two presentation
orders separately.

Controlling for presentation order, all the correlations just re-
ported followed the same trends, but not reliably (see Table 2).
When each condition was analyzed separately, the correlations
also followed the same trends, but not reliably. These correlations

Table 2
Correlation Coefficients Between Looking Time and Recall

Correct
actions
LT recalled Recall errors
Coarse LT 377 (.23) —.53" (—.26)
Chronological, scrambled 17, .35 -37", —-.18
Intermediate LT 18 —.49* (—.287)
Chronological, scrambled -.06, .19 —-417, —.18
Fine LT —.07 337 (.26)
Chronological, scrambled -.001, —.01 21, .32
Within-unit LT —.30" 497 (.17)
Chronological, scrambled —-.08, —.18 .35,.02

Note. Correlation coefficients between recall and looking time (LT) were
measured in the slideshow task in Experiment 2. Numbers in parentheses
show correlations controlling for presentation order: These are reported in
instances in which the overall correlations between recall and looking time
were significant. Bold numbers reflect separate correlation coefficients for
the chronological and scrambled conditions, respectively.

Tp<.10. *p<.05.

might prove to be reliable with a larger sample size, thus providing
a stronger replication of findings from Experiment 1, which indi-
cated that processing time at breakpoints is meaningful to gener-
ating a coherent representation of observed behavior.

Discussion

Breakpoints are privileged, even when viewed as part of a
randomly ordered sequence of slides from an organized activity.
Breakpoints were looked at longer than ordinary moments, though
less so for scrambled than for chronological sequences. In the
scrambled sequence, looking times were longer primarily at coarse
breakpoints, with little distinction between fine and intermediate
breakpoints. By contrast, for chronological sequences, looking
time was greatest for coarse breakpoints, then intermediate, and
then fine breakpoints. Critically, the breakpoints were not defined
by each participant individually but were instead defined by the
participants from Experiment 1. That viewers look longer at break-
points that are not self-selected confirms that there is consistency
in how viewers perceive and understand observed activities, at
least activities that are likely familiar. The change measure mir-
rored the looking time measure in both the scrambled and chro-
nological conditions. Thus, even in random sequences, breakpoint
slides, especially coarse breakpoint slides, were more physically
distinctive, locally, from preceding slides than were within-unit
slides. Going further, breakpoint slides were more physically dis-
tinctive, globally, from all other slides in the slideshows.

The data from the chronological condition replicate those from the
first experiment in showing that although change and looking time
rise and fall in tandem, change does not completely account for
looking time, further evidence that there are subtle or more conceptual
changes that signal a transition that viewers detect but that the change
measure does not. These more conceptual changes might relate to the
particular objects being acted on and their associated goals. For
activities like these, each new action unit at the coarse level typically
entails a new object or object part as well as a new action, whereas at
the fine level, each new action unit typically entails a new action on
the same object or object part (Zacks, Tversky, & Iyer, 2001). Intro-
ducing both a new object and action likely explains some of the
greater physical change seen at coarse breakpoints, compared with
fine breakpoints. But physical change aside, viewers’ recognition of a
new object and the new encompassing goal that comes along with it
could also affect attention.

Not surprisingly, participants who viewed chronological slide-
shows recalled more correct actions and made fewer intrusions than
did participants who viewed the scrambled slideshows. As before,
participants who looked longer at breakpoints recalled more correct
actions. Thus, relative looking time is a good index of online mental
organization of the ongoing events and better online organization
yields better memory. Together, the results of this study corroborate
and extend the previous results. Importantly, they show that break-
point moments are intrinsically different from ordinary moments, so
they are looked at longer than other moments, even out of temporal
context. Breakpoint moments are even more privileged in context, in
a coherent temporal structure.

General Discussion

For much of their lives, people are engulfed in an ever-changing
stream of activity. Ultimately, people need to make sense of the
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chaotic confusion, to focus on, absorb, and act on the information that
is important. In all the senses and in all domains, people cope with
information overload by segmenting and organizing it, chunking it
into kinds and parts. For the multisensory information dispersed over
time, people form categories of events and actions, and organize those
into taxonomies of kinds (e.g., Morris & Murphy, 1990) and partono-
mies of parts (e.g., Tversky et al., 2008; Zacks, Braver, et al., 2001;
Zacks & Tversky, 2001). By segmenting the stream of activity,
observers transform what is inherently continuous and unformed into
units that are discrete and meaningful.

The breakpoints that segment the action stream into units are
key to this transformation. Breakpoints have a privileged status in
the perception and understanding of activities: There is agreement
on their locations, they are hierarchically organized and are espe-
cially memorable and comprehensible, and deleting them is dis-
ruptive to understanding (e.g., Hard et al., 2006; Newtson &
Enquist, 1976; Schwan & Garsoffky, 2004; Zacks, 2004; Zacks &
Tversky, 2001). The work described here extended those findings
in a number of directions by introducing two new methods.

Because breakpoints mark the convergence of important perceptual
and conceptual cues, we predicted that breakpoints would be marked
at local maxima of action change. More change means more infor-
mation to process, which should elicit heightened attention. To assess
heightened attention, we developed the dwell time procedure: videos
of organized human activity were sampled at a 1-s rate and presented
as a slideshow. Participants were free to look at each slide as long as
they wished in order to remember the actions portrayed. To reveal the
contour of action change, we computed the slide-to-slide, pixel-to-
pixel differences between consecutive slides that were first filtered to
highlight human movements. Later, participants segmented the source
videos into coarser and finer units.

Although both measures are crude—dwell time does not reveal
what is attended to and change does not specify what is chang-
ing—their joint time courses revealed much about how observers
segment ongoing action. Breakpoints were marked at local max-
ima of action change and elicited greater attention, as indexed by
dwell time. Moreover, both change and looking time were greater
for coarser breakpoints than for finer breakpoints, confirming that
observers segment ongoing behavior at multiple levels simultane-
ously. Increased attention to breakpoints indicates better hierarchi-
cal organization, which should improve memory. In fact, observers
who looked relatively longer at breakpoints remembered more
actions than those who looked less.

Although change and looking time were closely coupled, re-
gression analyses showed that change did not completely account
for looking time. More subtle changes in the flow of action may
contribute to looking time, as well as conceptual changes, such as
accomplishment of goals and subgoals. There were also hints of
qualitative differences between physical change and looking time
contours: Prior to breakpoints, looking time increased several
slides before change increased. It is possible that observers at-
tended to small yet meaningful changes such as the shifts of eye
gaze and body that begin prior to a breakpoint and signal an
impending transition from one action to another.

Is the informativeness of breakpoints entirely a consequence of
being embedded in a sequence of actions, or is there also infor-
mativeness inherent in the breakpoints? The second experiment
confirmed that even when the slide sequence was scrambled,
breakpoint slides were more different from the preceding slides,

and they attracted more looking time. That is, the privileged status
of breakpoints is in part inherent; they are more distinctive than
ordinary moments, even out of context. Notably, the informative-
ness of breakpoints increased in context. There was a stronger
increase in both looking time and physical change at breakpoints
for chronologically viewed sequences and clear differentiation in
looking time for breakpoints at different levels of segmentation.
Unlike for scrambled sequences, looking time for breakpoints in
chronological sequences could not be fully explained by the phys-
ical distinctiveness of the breakpoint slides. These findings repli-
cated the earlier findings, despite the breakpoints being determined
by separate observers.

How these findings will extend to the observation of other types of
activities remains to be seen. We explored an extremely modest range
of activities designed to be familiar to undergraduates. What about
activities that are unfamiliar? Given the convergence of bottom-up
and top-down information across an activity, we can predict that
unfamiliar activities would produce similar patterns of dwell time.
The redundancy of cues to breakpoints mean that even when one kind
of cue is unavailable, other kinds of cues can allow recognition and
permit inference and action (e.g., Hard et al., 2006). What about
activities that differ in organization? Activities vary in the extent to
which they are hierarchically organized and in the constraints that are
imposed on the relations between actions in a sequence. Some rela-
tions are causally constrained, for example, putting the bottom sheet
on the bed before the top sheet. Others are not; the bills can be paid
and the dishes washed in many orders. Whether and how these
constraints affect the processing of activities across time remains an
open question. Finally, the present experiments involved monitoring
looking time to slices of an activity under instructions to study them
for later recall. Certainly, people do not normally attend to activities
for the purpose of memorizing them, and it would be informative to
test other instructions.

To act effectively in the world, people need to make sense of
what they see, and sense-making entails understanding actions as
they unfold in the world. Understanding requires partitioning the
action stream into meaningful units. The current project has shown
that local maxima of action change draw attention and are an
excellent cue to the critical moments of the action stream: the
completion of one goal and the initiation of actions directed to
another. The convergence of perceptual and conceptual cues at
breakpoints, along with the allotment of added attention, should
encourage inferring one cue from the other, promoting learning
action sequences, understanding the intentions of others, and plan-
ning one’s own actions.

Breakpoints are links. They link one action to another: the com-
pletion of one action and the simultaneous preparation to enact the
next. They link the perceptual to the conceptual: from observing a
movement to inferring its goal. They link one level of an action
hierarchy to another: coarser to finer. Breakpoints are more than
boundaries between actions; they mark the confluence of concrete and
abstract features that provide the shape of ongoing action.
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Appendix A

Calculation of Physical Change

First, each frame of the slideshow was passed through a con-
volution filter that identified and highlighted high contrast areas of
the image, such as the edges of people and objects in each frame
(see Figure Al). Each pixel of the resulting image was then
assigned a numeric contrast value from 0 to 255, corresponding to
its brightness (as defined by the hue—saturation—brightness color
model). Contrast values were high for pixels near the edges of
people and objects in each frame, but low elsewhere.

The next step in the calculation was to pair each pixel in that slide
with the corresponding pixel in the previous slide, determine the
absolute value of the difference between the contrast values for every

such pair, and sum up all the resulting values to yield a single change
value for that slide. This calculation can be formally defined as

nom

DY

i=1j=1

Pij — 4di

where p;; is the contrast value of the pixel at coordinate (i, j) in the
first frame, where q; is the contrast value of the pixel at coordinate
(i, j) in the second frame, and where n and m represent the width
and height of the slideshow in pixels.

(Appendices continue)
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Figure Al.
filter (right).

An example of what an original slide (left) looked like after it was passed through a convolution

Appendix B

Calculation of Alignment and Enclosure Scores

Alignment

Alignment is a measure of hierarchical segmentation that cap-
tures how temporally aligned the boundaries of coarser- and finer-
level action units are. This continuous alignment measure was
developed by Zacks, Tversky, and Iyer (2001). Alignment was first
calculated between coarse and intermediate levels of segmentation.
For each coarse breakpoint, the temporal distance in ms to the
nearest intermediate breakpoint was calculated. These distances
were averaged to determine the mean distance (AveDist) for each
participant. The mean distance was compared with a null mod-
el—an expected distance between coarse and intermediate break-
points based on chance (AveDist,). Calculations of this null model
are described in detail in Zacks, Tversky, and Iyer (2001). This
method revealed that coarse and intermediate breakpoints were
more aligned (M = 1,708.42 ms, SEM = 216.76) than chance
(M = 6,400.05, SEM = 731.89), #(39) = 6.84, d = 1.37. Align-
ment was next determined between intermediate and fine break-
points. Fine and intermediate breakpoints were more aligned (M =
911.30 ms, SEM = 72.48) than chance would predict (M =
2,645.34, SEM = 351.91), #(39) = 5.41, d = 1.08. On the basis of
the reasoning that a larger difference between expected and ob-
served alignment should indicate greater hierarchical encoding, we
also calculated a set of alignment scores for each participant by
subtracting the observed alignment from the alignment expected
by chance and dividing that difference by the alignment expected
by chance, following Hard et al. (2006).

Enclosure

Enclosure is a measure of hierarchical segmentation that cap-
tures how much coarser level action units contain, or enclose, finer
level units. Intermediate—coarse enclosure was calculated accord-
ing to the following steps. The left side of Figure B1 shows a
chronological list of a set of coarse breakpoints and intermediate
breakpoints. These numbers represent each time in ms, from the
start of the video, that the participant pressed the spacebar to
indicate a coarse and an intermediate breakpoint. The first step was
to take each coarse breakpoint and line it up with the intermediate
breakpoint that it was temporally closest to, as shown in the first
two columns on the right side of the figure. Next, once a coarse
breakpoint was lined up with an intermediate breakpoint, we
determined whether that coarse breakpoint occurred temporally
before or after the fine breakpoint, as shown in the final column of
the figure.

The numerator of the enclosure score was then determined by
first checking for cases in which multiple coarse breakpoints
shared (i.e., were closest to) the same intermediate breakpoint. For
each such case, we determined which of the shared coarse break-
points was in fact closest to the intermediate breakpoint. Only this
pairing would be used in determining the participant’s enclosure
score; the other pairing was excluded. One consequence of this
rule is that the enclosure score is penalized when a coarse break-
point does not reasonably line up with an intermediate breakpoint.

(Appendices continue)
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Is coarse
Coarse Breakl?oint lnéi::kes‘i)?;et Coarse Break{)oin( ln];erl;’r:kes(i)?:\et be fgrr:i]?;%ig
Times Times Times Times intermediate
breakpoint?
3781 3811 3781 3811 Before
41085 5011 5011
65108 9811 9811
92300 17931 17931
101676 23315 23315
129684 32603 32603
171651 38595 41085 38595 After
45003 45003
45339 45339
51186 51186
55107 55107
59386 65108 59386 After
77867 77867
91050 92300 91050 After
99762 101676 99762 After
115474 115474
128106 129684 128106 After
142866 142866
150418 150418
166769 166769
167929 167929
170721 171651 170721 After
173409 173409
175705 175705
176113 176113
177002 177002
177337 177337
178985 178985
180065 180065
180841 180841

Figure B1.

An illustration of enclosure calculation between coarse and intermediate breakpoints. Lists of the

participant’s coarse and intermediate breakpoint times are shown on the left. The columns on the right depict the
line up of coarse breakpoints with the nearest intermediate breakpoint and the determination of whether that
coarse breakpoint fell before or after the intermediate breakpoint in time.

The numerator of the enclosure score is then equal to the remain-
ing total number of cases in which a coarse breakpoint fell after its
nearest intermediate breakpoint. In the example, the participant has
an enclosure score numerator of 6.

The enclosure score was calculated by taking the numerator
and dividing it by the total number of coarse units. In this
example, the participant has a total of 7 coarse units, so we
calculate the enclosure score to be 6/7 = .86. The maximum
possible enclosure score would be 1, which would mean that all
of the coarse breakpoints followed their closest intermediate

breakpoint in time rather than preceding them. The minimum
enclosure score would be 0, indicating that all of the course
breakpoints preceded their closest intermediate breakpoint in-
stead of following them. Fine-intermediate enclosure was similarly
calculated by determining the proportion of intermediate break-
points that followed their closest fine breakpoint in time.
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