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A productive woy to think about imagistic mentol models of physical systems is OS 

though they were sources of quasi-empiric01 evidence. People depict or imagine 

events at those paints in time when they would experiment with the world if 

possible. Moreover, iust as they would do when observing the world, people 

induce patterns of behavior from the results depicted in their imaginations. These 

resulting patterns of behavior can then be cast into symbolic rules to simplify 

thinking about future problems and to reveal higher order relationships. Using 

simple gear problems, three experiments explored the occasions of use for, and 

the inductive transitions between, depictive models and number-based rules. The 

first two experiments used the convergent evidence of problem-solving latencies, 

hand motions, referential language and error data to document the initial use of 

a model, the induction of rules from the modeling results, and the fallback to o 

model when a rule fails. The third experiment explored the intermediate rep- 

resentations that facilitate the induction of rules from depictive models. The 

strengths and weoknesses of depictive modeling and more analytic systems of 

reosoning ore delineoted to motivate the reasons for these transitions. 

When reasoning about physical systems, people sometimes experience the 
phenomenology of depicting the system’s behavior in their imagination 
(Clement, 1994; disessa, 1993; Hegarty, 1992). Because people do not 
experience this phenomenology throughout their reasoning, we assume that 
its onset reflects a functional shift in problem solving strategies. Beginning 
with this assumption, we consider why and when people use imagistic models 
to reason about a physical system, and how this imagery becomes related to 
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a. Open Chain Configuration b. Closed Chain Configuration 

Five gears are arranged in a horizontal Five gears are arranged in a circle so 
line. If you try to turn the gear on the that each gear is touching two other gears. 
left clockwise, what will the gear on the If you try to turn the gear on the top clock- 
far right do? wise, what will the gear just to its right do? 

Figure 1. A Visual Representation of Two Problems. 

more abstract understanding. Our hypothesis is that one purpose of imagery 
is that it can serve as a surrogate for unavailable, or effortfully obtained, 
empirical evidence. This is not meant to imply that imagery evidence is 
necessarily veridical or capable of revealing previously unexperienced classes 
of phenomena. Rather, the hypothesis is that people often situate their 
reasoning in the structure of imagined experience when they cannot situate 
their reasoning in the structure of perceived experience. To examine the 
explanatory value of the hypothesis, we test two implications. First, imagery 
should be used to generate surrogate evidence at those points in time when 
people would perceive empirical evidence if they could. Second, much like 
reasoning over experience, people should be able to use the surrogate evi- 
dence of imagery to learn higher order rules. We test these’implications by 
examining how people move between depictive imagery and rule-based 
reasoning depending on their current and evolving knowledge of gear 
interactions. 

DEPICTION AS A SOURCE 
OF EVIDENCE FOR NOVEL PROBLEMS 

If depictions of imaginary events serve as surrogates for unavailable evidence, 
then people should use depictions at those times when they would ideally use 
empirical evidence but for some reason cannot. For example, consider the 
gear problem shown in Figure la. As is characteristic of physical problems, 
there are several ways one might solve this problem depending on one’s 
knowledge state and maturation (e.g., Bruner, 1966; Chi, Feltovich, 8z 
Glaser, 1981; Larkin, McDermott, Simon, & Simon, 1980; Me.&, 1985; Weld, 
1986; White & Frederiksen, 1990). One approach is to use a global level 
description or rule about the device (e.g., Hegarty, Just, & Morrison, 1988). 
For example, people could use a parity rule that states, “If there is an odd 
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number of gears in a chain, then the first and last gears turn the same direc- 
tion.” Given sufficient confidence in the rule, there is little reason to resort 
to empirical evidence. Therefore, we should not expect people to imagine 
the system’s behavior if they have a parity rule. A second approach is to rely 
on local rules about single interactions within the system. For example, “If 
two adjacent gears are touching, then they turn in opposite directions.” 
Using this local rule, people could work through the gear chain, reasoning 
about pairs of gears and propagating the results from one local inference to 
the next (e.g., de Kleer & Brown, 1981). Again, it is not necessary to gather 
further evidence about gears, and therefore people should not imagine the 
gears in action. But what about the situation in which people do not have an 
appropriate global or local rule (cf. de Kleer & Brown, 1983)? For example, 
they may not have previously thought about pairings of gear motions. Or, 
they may have a parity rule that is too narrowly defined for the task at 
hand, as would be the case if one tried to apply a simple, open-chain parity 
rule to the locking problem in Figure lb. In these situations, people would 
presumably gather empirical evidence if practical. Therefore, according to 
our hypothesis, it is in these situations, where people have inadequate rules 
and limited access to empirical evidence, that people should depict an imagi- 
nary model. They might, for example, simulate a left-hand gear turning 
clockwise against a right-hand gear to see what develops. Or, in the case of 
the closed gear chain, they might mentally model two adjacent gears each 
trying to turn clockwise. 

The idea that people rely on mental models, imagistic or otherwise, to 
draw inferences about novel situations is not new. An original motivation 
behind mental model theory was to provide an explanation for how people 
reason about novel textual descriptions for which they do not have a pre- 
existing script or schema (Black & Bower, 1980; Collins, Brown, & Larkin, 
1980; van Dijk & Kintsch, 1983). Rather than interpreting information into 
pre-existing knowledge structures, people use lower-level knowledge (e.g., 
p-prims, diSessa, 1988) to construct models that portray possible worlds 
consistent with the text (Bransford, Barclay, & Franks, 1972; Johnson- 
Laird, 1983; Mani & Johnson-Laird, 1982; McNamara, Miller, & Bransford, 
1991). In the domain of physical and mechanical inference, the term mental 
model has referred to many different representational constructs, including 
rules. Cognitive scientists within the qualitative physics tradition, for example, 
have simulated model-based reasoning by employing predicates that can 
“represent continuous properties of the world by discrete systems of sym- 
bols.” (p. 12, Forbus, 1990; but see Hendrix, 1973). In this article, how- 
ever, we examine transitions between discrete symbolic rules and reasoning 
that mimics perceptual experience. Therefore, to maintain the distinction, 
we refer to depictive models when we mean models that attempt to reinstate 
perceptual experience. 
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Although not a central assumption for the current purposes, in our for- 
mulation (Schwartz & Black, 1996) a depictive model is much like analog 
imagery (Shepard & Cooper, 1982), except that it includes provisions for the 
representation of physical constraints (e.g., friction) as well as spatial ones 
(e.g., occlusion). Like analog imagery, a depictive model reveals an object’s 
real-time, continuous changes by transforming a referent model according 
to internalized constraints (Shepard, 1994). Unlike analog imagery, depic- 
tive models can use represented physical constraints to coordinate the local 
interactions between imagined objects. For example, a friction constraint 
may help coordinate the imagined movements of two touching gear sur- 
faces. Relevant to the current studies, the constraint-based formulation may 
help explain why people use depictions in situations of novelty. Deep knowl- 
edge embodied in a constraint may be difficult to formulate into a rule-based 
description of object behaviors, but it may reveal itself in the imagined 
object behaviors that it enforces. For example, Schwartz and T. Black (1996) 
studied inferences about nonrigid behaviors to demonstrate that a depiction 
can yield an inference that cannot be drawn otherwise. Participants saw two 
glasses that had different diameters, but had identical heights and levels of 
imaginary water. Their task was to determine whether the imaginary water 
in the two glasses would start pouring at the same angle of tilt, and if not, 
which glass would pour first. When participants simply looked at the glasses 
and made a qualitative judgment, they were rarely correct. However, when 
they closed their eyes and tilted each glass until the imagined water started 
to pour, they correctly tilted the narrower glass further. The success of the 
depictive strategy motivates why it may be adaptive to construct a depictive 
model as a surrogate for empirical evidence; namely, a mental depiction 
may provide access to sources of knowing unavailable to more discrete, 
rule-based reasoning. So, in the case of the ,gears, depictions may tap into 
constraint-based knowledge about touching objects (e.g., Funt, 1980; 
Parsons, 1994) that is not readily used in a more discrete, verbal formulation. 

DEPICTION AS A SOURCE 
OF EVIDENCE FOR RULE INDUCTION 

If people use depictions as surrogates for evidence, then people should be 
able to use their depictive results much as they do empirical results. In the 
current case, we examine whether people can use the patterns manifested in 
their depictions to induce higher order relationships. For example, imagine 
an individual who successively models five (e.g., Figure la), six, and seven 
gear problems. If these models serve as “quasimorphs” (Holland, Holyoak, 
Nisbett, & Thagard, 1986) of evidence, then the individual might induce a 
parity rule over the pattern: 5 = clockwise, 6 = counter-counter, 7 = clock- 
wise. The idea that people can induce numerical rules from their mental 
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depictions complements Johnson-Laird’s observation that “by reflecting on 
the properties of relations represented in mental models, an individual may 
come to acquire a higher-order knowledge of them” (p. 191, Johnson- 
Laird, 1981). 

The following experiments and their accompanying discussions docu- 
ment how the induction of abstract rules occurs over mental depictions. In 
addition to supporting the hypothesis that depictive models provide sur- 
rogate evidence, this documentation can begin to address the question of 
how nonnumerical, depictive representations can evolve into numerical, 
abstract representations. In the larger scheme of things, if one is to accept 
the plausibility of multiple forms of representation, it must be shown how 
and what information translates between these forms (e.g., Kosslyn, 1980). 
To simplify the task of identifying transitions between models and rules, we 
operationalize an abstract rule as a truth-valid assertion that relies on an 
articulated symbol system. By rules we do not mean production rules, 
although they may be the underlying form of an abstract rule. Rather, we 
mean a representation that depends on linguistic or numerical symbols. In 
the current case, a parity rule for the gears is abstract by virtue of its depen- 
dence on the mathematical relations of odd and even. 

In addition to inducing an abstract rule that can characterize the patterns 
within their depictions, people should use this rule. To see why, consider a 
weakness of depictions and some strengths of rules. A demonstrated limita- 
tion of a dynamic, imagistic inference is that it can only simulate local 
interactions (Hegarty & Sims, 1994; cf. Kosslyn, 1980). Although depictive 
models of local interactions can be subcomponents of a larger model (Hegarty 
& Just, 1993), depictive models are not the same thing as the mental models 
that have been described for the understanding of complicated systems 
(e.g., Gentner & Stevens, 1983; Vosniadou & Brewer, 1993). To model a 
complex system through mental depiction, it would be necessary to model 
subassemblies of the system and chain the results of each simulation to 
adjacent subassemblies (Hegarty, 1992). When solving a 313 gear problem, 
for example, an individual may need to depict each pair of adjacent gears 
separately. This is a prohibitive task. In contrast, a parity rule allows for a 
quick derivation of the answer; 313 is an odd number, and therefore, the 
first and last gears turn the same direction. This example points out one 
strength of abstract rules. They tend to provide parsimonious methods for 
solving classes of well-defined problems. 

A second motivation for shifting to a rule-based representation is that 
people can make inferences based on the structure of the rule’s symbolic 
domain. For example, once formulated in a logical fashion, a rule can be 
used to reason about relations like contradiction. Imagine applying an open- 
chain parity rule to a circular, five gear problem (Figure lb). The parity rule 
makes it possible to use contradiction to think about the problem. For 
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example, the fifth (last) gear is odd and should turn clockwise, but this gear 
is also the second gear counting the other direction, and therefore should 
turn counter-clockwise. These contradictory predictions can indicate that 
something is amiss with the original parity rule, although they cannot deter- 
mine the correct outcome. Solely on the basis of this contradiction and 
without further physical or imagined evidence, people could just as well 
infer that the gears would jump off the table as they could infer that they 
would jam. Nonetheless, the example does show how the structure of a 
symbolic domain can support forms of reasoning not available to mental 
depiction. One’s imagination, like an experiment, reveals determinate 
“factual” results, not contradictions. Only by virtue of one’s theoretical or 
rule-based interpretation does a fact have something to contradict. 

SHUTTLING BETWEEN DEPICTIVE MODELS 
AND ABSTRACT RULES 

To show that people use depictions as surrogates for evidence, the following 
experiments document how people shuttle between depictive models and 
abstract rules. All three experiments used verbally presented gear problems. 
Our thought was that the gear problems would yield a crisp example of the 
movement between model and rule that, in other tasks, may occur through 
less overt, and more frequent, shuttling within a single problem. In each 
experiment, people solved a series of similar problems (e.g., open-chain 
problems) and then confronted new, but related problems (e.g., closed- 
chain problems). Given that participants never actually see any gears, the sur- 
rogate-for-evidence hypothesis leads to three general predictions. The first 
prediction is that people tend to use depictive models when a situation is 
novel with respect to their current body of rules, as would be the case when 
participants are first introduced to the gear problems. The second predic- 
tion is that people can induce a rule from a pattern of depictive results, as 
should occur if participants solve several open-chain problems in a row. The 
final general prediction is that people fall back to depictive modeling when 
their rules become inadequate, as should be the case when participants in- 
duce an open-chain rule and are then given a locking, closed-chain problem. 

The series of gear problems created an unusual induction task. In addi- 
tion to creating a situation where a correctly induced rule would subse- 
quently fail, the task differed from previous induction research in three 
ways. First, there was no physical stimulus over which people could induce a 
rule. This differentiates the current work from examinations of how people 
coordinate experiential and theoretical knowledge during induction (e.g., 
Klahr & Dunbar, 1988). Although we could have allowed participants to use 
real gears for this task, people can solve the problems without the gears. 
Reasoning and learning in the absence of physical evidence is not atypical 
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(e.g., using a text). People manage to learn from their own thoughts and we 
are examining this process. 

Second, the induction of a parity rule can be distinct from the accurate 
solution to the problems. In concept attainment and insight research, the 
induction or insight is measured by whether and when a participant solves 
the given problem (e.g., Kaplan & Simon, 1990). An example of this para- 
digm is a task for which the participant must induce the rule that is generat- 
ing a sequence of playing cards (e.g., odd hearts, Laughlin & Shippy, 1983). 
In this paradigm, problem solution is predicated upon induction. For the 
gear task, the induction is predicated upon problem solution. People can 
infer an accurate solution without ever discovering the parity rule. Thus, 
unlike concept attainment and insight tasks, the inductive insight that leads 
to the parity rule is not required to solve the problems nor is the participant 
necessarily aware that such a rule exists. This situation parallels educational 
settings in which we want students not just to solve problems, but also to 
induce rules that can apply across a number of problems. 

Third, the induction task differs from prior studies that used fairly abstract 
tasks (e.g., Tower of Hanoi, Simon & Lea, 1974). Abstract tasks are not 
naturally suited to the question of how perceptual representations of phy- 
sical causality become related to more formal, mathematical representations. 
Using the problem space representation typical of tasks like the Tower of 
Hanoi, Metz (1985) analyzed representational transitions in reasoning 
about gears. Although a thorough investigation, the emphasis on a problem 
space analysis downplayed the shifts between perceptual and analytic strate- 
gies that are the focus here. 

EXPERIMENT 1 

In Experiment 1, participants heard 12 gear problems. The first six problems 
described gears in an open chain. According to our hypothesis, participants 
should depict the first few problems to generate evidence about interacting 
gears, assuming they do not already have an applicable rule. Subsequently, 
they should use this evidence to help induce a parity rule. Prior induction 
research has shown that people often require two examples from which to 
abstract structural patterns (e.g., Gick & Holyoak, 1983). Accordingly, rule 
induction should occur around the third problem and rule use should occur 
for the following three problems. The second six problems described gears 
in a closed chain. If participants induce a parity rule from the open-chain 
problems, it should fail when applied to a locking problem. According to 
our hypothesis, participants should model these problems because they can- 
not rectify their parity rules on the basis of mathematics or logic alone. 
They should require new evidence about adjacent gears turning in the same 
direction. Once participants solve three closed-chain problems, they should 
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induce another parity rule that takes into account the locking behavior of an 
odd, closed chain. 

In this experiment, latency and gestural data were used to indicate model 
and parity rule use. Rule-based solutions should be relatively fast. For these 
problems, a parity rule simply requires noting the direction of the initial gear 
and determining the oddness or evenness of the gear chain. In contrast, 
modeling is a sluggish way to solve problems that involve several components 
and motions. Although depictive models can operate very quickly (e.g., 
Schwartz, 1995b), they can only model a limited number of events simul- 
taneously (Hegarty & Sims, 1994). So, for example, a participant might 
model the first and second gears, then the second and third gears, then the 
third and fourth gears, and so forth. As a result, modeling latencies should 
be longer than rule-based latencies for this task. For example, compare the 
time it takes to model 20 gear motions with the time it takes to determine 
that 20 is an even number. 

The second data source was hand gestures. Pilot work revealed that these 
problems occasion the frequent use of hand gestures. Several pilot partici- 
pants, for example, splayed their fingers on both hands and then rotated 
them inward mimicking the behavior of meshing gears. The possibility that 
people use these gestural models to solve the current problems brings the 
importance of depictive models into theoretical relief. The models people 
create with their hands straddle the boundary between physical and mental 
models. From one perspective, the hand movements are a method of extend- 
ing one’s thinking into the environment for further reflection (Resnick, 
1987). From another perspective, the hands create a representation that 
brings the physical environment into one’s thinking (Scribner, 1984). Hand 
movements, by being physically instantiated mental models, highlight the 
idea that people may reason similarly over internally and externally generated 
phenomena (Schwartz & T. Black, 1996). 

The hand gestures in focus here are not the same as the speech accompan- 
iment gestures often investigated in social psychology (e.g., Ekman & Friesen, 
1972). Whereas speech accompaniment gestures, like fist pounding and 
rhythmic beats, tend to have metaphorical and pragmatic relations to dis- 
course semantics (but see Alibali 8z Goldin-Meadow, 1993), the current 
gestures represent their referents deliberately and directly, as in molding 
one’s hand into a gear shape (McNeil, 1987). Unlike speech accompaniment 
gestures, these referential gestures can stand independently of verbal pro- 
cesses (Saltz & Donnewerth-Nolan, 1981). For example, many participants in 
the following studies silently stared at their moving hands. Hand gestures 
that take the form of their referents have been shown to influence semantic 
sensibility judgments (Klatzky, Pellegrino, McCloskey, dc Doherty, 1989). 
Given that referential gestures can play a role in semantic tasks without ver- 
bal mediation, it is reasonable to suppose that these representations can 
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also support inferences. It is important to note, however, that this article 
does not offer proof that hand gestures play a functional role in solving the 
gear problems. Although there is evidence that bodily action facilitates 
imagined transformations in navigational tasks (Rieser, &ring, & Young, 
1994) and object rotation tasks (Rieser & Schwartz, in preparation), one 
cannot be sure that gestures help people solve the causal problems employed 
here. _ Perhaps the gestures are simply correlated accompaniments to a 
“deeper layer” of representation. However, even if this latter case is true, 
gestures can open a fresh window on model-based reasoning by virtue of 
their correlation with deeper layers of representation. 

Gesturing behavior is a potentially useful source of evidence that people 
are reasoning depictively. One strength of the data is that many people ges- 
ture spontaneously. This makes for an unobtrusive source of data. Another 
strength is that hand gestures may directly reflect spatial reasoning. As 
such, gestural measures may be better suited to capturing the spatial simula- 
tions of a depiction than verbal measures. Moreover, the data source directly 
indicates modeling. Unlike analog imagery, where the depiction occurs 
internally, one does not need to infer the existence of a depictive model 
when using gestural data; the referent model is in plain view. 

Method 

Participants 
Twenty-four paid graduate students from Columbia University participated. 

Design 
Twelve gear problems (three short open-chain, three long open-chain, three 
short closed-chain, and three long closed-chain) created a 2 x 2 within-sub- 
ject design. The collfiguration factor represented the open and closed chains. 
Participants always heard the open-chain problems first. There were six 
problems in each configuration. The block factor split each set of six problems 
into three problems per block. The first blocks in each configuration used 
randomly selected problems from three to six gears in size. The second 
blocks used three problems randomly selected from the range of five to nine 
gears. No chain length was repeated within a configuration. First block 
chains were shorter than second block chains to ensure that long latencies 
for the first blocks were not due to longer chain lengths. 

Procedure 
The participant sat facing a video camera and was screened from the experi- 
menter . The experimenter read, “All of the following problems involve 
reasoning about gears. You should assume that each gear is touching its 
closest neighbors. I am only interested in your answer and do not want you 
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to explain what you are thinking. If you have a question about the problem 
I will only re-read it. Be sure of your answer. If you get it wrong, I will tell 
you so and you will have a second opportunity to solve the problem. After 
that I will tell you whether you are right or wrong and go onto the next 
problem.” If participants exhibited confusion over the type of gears (e.g., a 
car shift), the gears were compared to quarters, side-by-side on a table. 
There were no visual stimuli. The experimenter then read, “[Five] gears are 
arranged in a horizontal line, if you try to turn the gear on the far left clock- 
wise, what will the gear on the far right do?” Participants worked without 
prompting until they reported an answer. If the answer was correct, the 
experimenter read the next problem. If the answer was incorrect the partici- 
pants were given a second try, because we did not assume that participants 
would necessarily reason that if the gear did not turn one way, it must turn 
the other. A participant might try to remodel the problem instead. After 
participants completed the open-chain problems, the experimenter stated, 
“In the following problems, you are to assume that each gear is touching 
two other gears.” The experimenter then said, “[Five] gears are arranged in 
a circle, if you try to turn the gear on the top clockwise, what will the gear 
just to its left do?” As debriefing, participants either taught a naive individ- 
ual how to reach correct answers, or explained the reasoning behind their 
answers. 

Coding 
A primary coder measured how much time each individual spent making 
rotation gestures for each problem. To count as a rotation gesture, a motion 
had to have at least a 90” circular movement of an arm, hand, or finger. 
The coded duration of the gesture only included active movements. This 
avoided over-estimating the amount of dynamic modeling because it excluded 
periods when individuals left their hands suspended in mid-air during reflec- 
tion or speech. An independent judge, blind to the hypotheses, coded ges- 
turing times for each problem for four randomly selected participants. The 
independent judge and the primary coder had strong agreement; R = 29. A 
second type of coding was whether the individuals spontaneously mentioned 
a parity rule during problem solving or debriefing. Although parity rules may 
vary in generality, they all involve a parameter for the oddness or evenness of 
the number of gears. Accordingly, a mention of “odd” or “even” in con- 
junction with a statement of gear direction is reasonably indicative of a parity 
rule at play. There were no coder disagreements. Finally, problem-solving 
latency was measured as the time between the last word of the problem pres- 
entation and the first word beginning a correct or second answer. 

Results 
Twelve of the 24 participants performed above chance on their first answers 
to the problems in both configurations. Of the 12 individuals who performed 
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Open Chain Closed Chain 

Figure 2. Response and Gesturing Times by Problem Order (Experiment 1). Please note that 

the open- and closed-chain graphs use different scales. Refer to the text for an explanation of 
the similar patterns but differing magnitudes. 

below chance, four could not solve either the open- or closed-chain problems, 
and eight were unable to solve the closed-chain problems.’ Because of the 
focus on transitions between model and rule, we confine our analysis to the 
12 successful problem solvers. Figure 2 displays the problem-solving laten- 
ties and the time spent making rotational gestures. Both measures dropped 
to relatively stable levels after the third problem in the open chain, jumped 
with the introduction of the closed-chain problems, and then dropped again 
to stable levels after the third closed-chain problem. This suggests that par- 
ticipants initially modeled the problems for each configuration until they in- 
duced a more efficient solution rule. 

To analyze the data, we compared each individual’s average per problem 
latency and gesturing time to reach a final answer (i.e., a correct answer or 
an incorrect second answer) for each block of three problems. The top two 
rows of Table 1 show the averages and variability across individuals. Each 
individual’s four latency and four gesturing means were used to test the 
within-subject factors of configuration and block. The reported univariate 
significance values are adjusted according to the Huyhn-Feldt (HF) correc- 
tion value if necessary (Cliff, 1987). There was a main effect of the problem 

’ The four participants who could not solve the open-chain problems constructed unantici- 
pated models from the verbal descripiton of the gear problems. For example, during debriefing 
two of these participants mentioned that they thought of the gears as though they were tires on 
a truck. A third participant said she thought of the gears as stacked on top of one another. 
They did not construct models in which the gear surfaces interacted with one another. The 
other eight participants, who could solve the open-chain problems but not the closed-chain 
problems, had gesturing and latency patterns similar to the successful problem solvers for the 
open chains. However, they were never able to infer that the gears would lock and consequently 
never arrived at an adequate parity rule for the closed-chain problems. These subcriterion per- 
formances show one prerequisite of a successful depiction; namely, one must first determine 
what situation to depict. The participants who could not solve the open-chain problems evi- 
dently constructed models for a different problem. The participants who could not solve the 
closed-chain problems never tried to model two gears that were turning the same direction. 
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TABLE 1 

Average Per Problem Times for Each Problem Block (Experiment 1) 

Open Chain Closed Chain 

1st Block 2nd Block 1st Block 2nd Block 

Response Time (s) 6.9 (3.9)” 3.0 (2.9) 32.6 (24.1) 7.7 (5.8) 

Gesturing Time (s) 2.9 (3.9) 0.3 (0.6) 12.2 (17.2) 1.7 (2.5) 

Gesture Density (GT/RT) .36 (.37) .04 (.OB) 34 (30) .19 (.19) 

’ Standard deviation within parentheses across participants. 

block for both measures; F(2,10)= 8.35, p< .Ol, HF= 66. For both con- 
figurations, the latencies and gestures decreased on the second block of 
three problems; F(l,l I)= 16.81,~~ .Ol; F(l,ll)= 5.47,p< .05, respectively. 
The main effect of configuration was also significant; F(2,lO) = 7.48, p < .05, 
HF= 69, with closed-chain problems leading to longer overall latencies; 
F(l,ll)= 16.45, p< .Ol, and more gesturing; F(1,11)=6.3, p< .05. The 
block by configuration interaction was also significant; F(2,lO) = 4.2, p < .05, 
HF= .70. This was primarily due to the latencies which exhibited a larger 
drop from the first to second block of problems for the closed-chain than 
for the open-chain; F( I,1 1) = 9.2, p < .05. The block by configuration inter- 
action was marginal for the gesturing times; F(1 ,l 1) = 3.95, p< .l . 

Not only did people gesture longer during the first blocks of each con- 
figuration, but as shown in Figure 3, they also spent a greater proportion 
of their problem-solving time making gestures. We call this proportion the 
gesture density. The last row of Table 1 shows the average gesture density 
per problem for each block of three problems. There was a main effect of 
block showing that there was a greater gesture density in the first block 
compared to the second in each configuration; F( 1,ll) = 9.44, p< .05. 
There was no main effect of configuration; F( 1,ll) = 1.17, but there was a 
block by configuration interaction; F( 1,ll) = 5.05, p < .05. The interaction 
reflects the greater gesture density in the second block of the closed chain 
compared to the second block of the open chain. One interpretation of this 
interaction is that several individuals had not induced a parity rule by the 
end of the third problem for the closed chain, and therefore continued to 
model the problems until they induced a rule for the closed chain. For the 
first block of the open chain, 14% of the problems were answered incorrectly 
on the first try. However, for the first block of the closed chain, 39% of the 
first answers were incorrect. This means that several participants had only 
recently learned of the correct answer by the time they reached the second 
block of the closed-chain problems. Thus, they may not have had time to 
induce the parity rule over a set of stable answers. This interpretation may 
also explain why the problem-solving latencies for the second block of the 
closed chain were longer than the second block of the open chain. Some 
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Figure 3. Gesture Density by Problem Order (Experiment 1). The proportion of problem- 
solving time using rotating hand movements. 

individuals were still modeling the problems to ensure the correctness of their 
answers. By looking at the final problem of the closed-chain configuration, 
instead of averaging over the block of three problems, we may see that 
problem-solving latencies for the closed chain eventually showed the brevity 
expected of parity rule use. For the final problem, if we exclude the 40 s 
latency of one person, the average response time was 3.5 s (4.1 SD), very 
much in accord with the latencies for the post-induction, open-chain problems. 

As supporting evidence that participants had induced a parity rule, 10 of 
the 12 individuals who performed above chance spontaneously mentioned a 
version of the parity rule during debriefing. An 1 lth person stated the num- 
ber of gears, “same” or “opposite,” and then “clockwise” or “counter- 
clockwise.” The fact that this person stated “same” or “opposite” before 
mentioning a direction of motion, suggests that he resolved the problem on 
the basis of the odd/even pattern. The remaining individual who did not 
mention the parity rule did not appear to have induced a parity rule. As the 
chain lengths increased, his responses took longer and the time spent model- 
ing increased as he iterated, “clock. . . counter. . . ,” down the longer chains 
of gears. 

Discussion 
Our interpretation of the results is that the rise and fall in dependent mea- 
sures reflected a shuttling between depictive models and abstract parity 
rules. When participants first encountered the open chain, they had no rule 
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in place and depicted the gears to solve the problems. As a result, the problem- 
solving and gesturing times were relatively long. After having successfully 
modeled three problems, individuals had sufficient data to induce a parity 
rule. Consequently, latencies became shorter and gesturing activity disap- 
peared by the sixth problem. Supporting this interpretation, 10 of the 12 
successful participants reported a parity rule. Their initial rules, however, 
were insufficient for solving the locking, closed-chain problems. To dis- 
cover the behavior of gears in a closed chain, participants fell back to a 
depictive strategy as reflected in the increased latencies and gesturing. 
Response times were especially long because people had difficulty discover- 
ing that the gears would lock; enough so that eight individuals who had cor- 
rectly solved the open-chain problems were unable to solve the closed-chain 
problems. Those participants who did successfully solve the closed-chain 
problems were able to induce an improved parity rule, as indicated by the 
steep drop in latencies and gesturing that decreased for the final closed- 
chain problems. Latencies and gesturing for the second block of closed- 
chain problems were greater than the comparable open-chain problems, 
perhaps due to the increased difficulty of discovering the locking outcome. 
Because several participants did not determine the locking behavior until 
the later problems, they did not have an opportunity to induce a pattern of 
behavior over the first three closed-chain problems. 

There are four primary alternatives to our interpretation. The first two 
question the evidence of rule induction and rule use. The second two ques- 
tion whether the modeling for the first closed-chain problems was a general- 
izable example of fallback modeling. We first consider whether participants 
induced a rule. Given the current evidence, one might argue that participants 
became more proficient modelers over the trials and never used a rule-based 
representation. For example, they may have become practiced enough with 
their models that they could sustain them solely through internal imagery, 
thereby explaining why gestures diminished. The complete reliance on inter- 
nal imagery might also explain why latencies diminished, if one presumes that 
their internal imagery would be quicker than deploying their hands. One 
problem with this practice-effect interpretation is that the latencies and ges- 
tures did not diminish smoothly. Figure 3 shows that the gesture density 
shifted dramatically between the third and fourth problems in both config- 
urations. Nonetheless, this precipitous drop only demonstrates that people 
stopped using gestural models rather suddenly, not that they started using 
rules. 

The second alternative interpretation is that participants had parity rules 
all along. For the first few problems in each configuration, participants may 
have employed both gestural models and parity rules. It was not until their 
rules had received sufficient confirmation over a few trials that they were 
willing to rely on them exclusively. Under this interpretaion, rule use should 
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not be viewed as a result of induction, but rather as a result of gaining 
ascendancy in a strategy competition. Alternatively, participants may have 
applied rules all along, it was just that their initial rules were faulty and 
could not be relied upon exclusively. In this case, participants did not induce 
parity rules, but rather modified or pruned faulty rules using feedback or 
their own modeling. 

To counter these two alternative interpretations it is necessary to show 
that people actually induce a rule. Two lines of verbal evidence, not col- 
lected in the current study, could be relevant. One type of evidence would 
document the point of induction directly, perhaps through think aloud pro- 
tocols, and would show how the measures shift about this point. The second 
type of verbal evidence could show that rule-based behaviors primarily 
appear after induction. If participants were encouraged to verbalize their 
thoughts, there might be a shift in language that complements a shift in rep- 
resentations. When participants model the problem they might make refer- 
ences primarily to their models as in, “This one goes that way.” However, 
once participants induce a parity rule, they might make references primarily 
to the quantities in the problems as in, “Three gears is an odd number.” 
Experiment 2 developed the verbal evidence pertinent to the induction of a 
rule and the shift to rule-based reasoning. 

The third alternative to our interpretation accepts the idea that partici- 
pants induced a rule from their models, but disagrees with the fallback inter- 
pretation of the closed-chain modeling. By this and our interpretation, 
participants used models when their rules were insufficient for the task. 
However, for the purpose of clarifying how people use model evidence to 
inform their rules, we wish to make a further differentiation of the ways in 
which one’s body of rules may be inadequate for a given task, such as situa- 
tions where one has no rules (i.e., the first open-chain problems) and situa- 
tions where one’s rules fail (i.e., the first closed-chain problems). The alter- 
native interpretation does not embrace the differentiation of the open- and 
closed-chain modeling. Instead of falling back, people might have modeled 
the closed-chain problems for the same reason that they modeled the open- 
chain problems; namely they were both novel problems for which the par- 
ticipants had no rule. 

To support the fallback interpretation, one might demonstrate that 
people try to apply their rules, and then after these rules fail, people begin 
modeling the problem. For example, several participants in the preceding 
experiment clearly noted the contradictory, clockwise and counter-clock- 
wise, predictions of their open-chain rule when solving an odd, closed-chain 
problem. However, definitive evidence like this may be hard to develop 
because people could silently consider and reject their rules without external 
manifestation. An alternative approach is to show that people include 
knowledge of the open chain in their closed-chain rules. Although this does 
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not directly prove fallback modeling, it can show that the closed-chain 
problems were not novel in the same sense as the open-chain problems. 

The final alternative interpretation questions whether the modeling 
found for the first locking problems demonstrates the generality of fallback 
modeling. According to this alternative, the modeling for the closed-chain 
problems was due to the excessive difficulty of the locking problems, especially 
after people had developed a nonlocking set. In this case, the claim is that 
the fallback modeling demonstrated for the locking problems is a special 
case and does not generalize to less problematic situations. To evaluate this 
alternative, one can examine whether people model for a new problem that 
is not as difficult as the closed-chain problem. For example, after people 
induce a parity rule for the open-chain, they could be asked to solve an 
open-chain problem in which the initial gear turns counter-clockwise in- 
stead of clockwise. If they model for this simple variant, then the unique 
difficulties of a locking problem are not requisite for fallback modeling. 

EXPERIMENT 2 

The current experiment was designed to corroborate Experiment 1 and to 
gather verbal measures of rule induction and rule use. It was also designed 
to examine how different types of rule insufficiencies influence the shuttling 
between models and rules. There were several predictions at test. As before, 
we predicted that people model in situations where they do not have ade- 
quate rules, and that people can apply rules induced from their model simu- 
lations. To complement the latency and gestural data, verbal measures were 
used to evaluate rule induction and subsequent use. A new prediction in this 
experiment was that in situations of rule failure, as compared to situations 
of novelty, people induce new rules that include elements of their original 
rules. We also tested the hypothesis that people generally fall back to model- 
ing in situations where their rules are too narrow, not just in the unusual 
case of the locking problems. 

To generate the necessary data, there were two primary modifications to 
the first experiment. To encourage verbal production, participants worked 
in dyads. We employed pairs of participants, instead of think aloud direc- 
tives, because pilot work had shown that individuals tend to fall silent as 
they work through their model simulations. Moreover, a member of a dyad 
would presumably be quick to share a discovered parity rule, thereby indic- 
ating the approximate point of induction. 

The second modification was to append change problems to the original 
six problems in each configuration. The top of Figure 4 shows the original 
problems used in Experiment 1 and here. The gear that initiated the move- 
ment always turned clockwise and was on the left of the open chain or on 
the top of the closed chain. The bottom of the figure shows the new change 
problems added to each configuration. For one of the problems, the initial 
gear turned counter-clockwise. For the other problem, the initial gear was 



MODELS AND RULES 473 

Oriainal Problems 
Clockwise 

Left Side of Chain 

Clockwise 

Top of Chain 

(6) m 
E 

(14) 

@ 

Appended Change Problems 

Counter-Clockwise Counter-Clockwise 

Left Side of Chain Top of Chain 

3 
(7) D (15) 63 

Clockwise Clockwise 

Right Side of Chain Bottom of Chain 

(8) 

Flgure 4. Appended Change Problems for Experiment 2. Two problems that changed the 
direction and position of the “first” gear were added to each configuration. Parenthetical 
numbers indicate the presentation sequence. 

positioned on the right or bottom of the gear chain. These changes should 
make it so the participants’ recently induced parity rules would not be directly 
applicable to the problem, and thereby reveal whether people fell back to 
modeling for problems that were not as problematic as the locking problems. 



474 SCHWARTZ AND BLACK 

Moreover, if participants modeled the open-chain change problems, one 
can determine whether these results were carried over to their closed-chain 
parity rules. If participants simply applied a closed-chain parity rule to the 
change problems without modeling, then one may assume that the closed- 
chain problems were not completely novel because participants incorporated 
information from the open-chain problems. 

Participants 

Method 

Twenty-four paid graduate students from Columbia University were randomly 
paired. 

Design 
The open- and closed-chain configurations each had eight problems that 
were presented in ascending order from three to ten gears. Figure 4 provides a 
schematic. We separate the experimental design that replicated Experiment 1 
from the design that used the change problems to examine fallback model- 
ing. Replicating Experiment 1, a block by configuration design compared 
behaviors during the first six problems in each configuration. Unlike Exper- 
iment 1, the point of induction was measured by the statement of a parity 
rule. This provided an empirical, within-subject separation of pre- and post- 
induction problem blocks. The second experimental design focused on the 
effects of the change problems. The design for. this part of the experiment 
was configuration by change/no-change problem. Behavior on the sixth 
problem in each configuration (i.e., the last no-change problems) was used 
as a measure of stable rule-based behaviors. It was compared to behavior 
for the seventh and eighth problems within each configuration which changed 
the rotation direction and position of the initial gear, respectively. 

Procedure 
Dyad members, screened from the experimenter, faced each other over a 
low table and had several minutes to become acquainted. They were told 
that they would hear a number of problems, that they had to agree before 
reporting an answer, and that they had to remain in their seats. They then 
heard the same instructions as Experiment 1 with the modification that they 
continue solving each problem until they gave the right answer. 

Coding 
The appropriate unit of analysis was the dyad, not the individual. Because 
of shared reasoning and representations (e.g., one partner models and the 
other tracks the number of gears), separating the data according to individuals 
would be a difficult, if not impossible, task (cf. Schwartz, 1995a). 
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For the current experiment we simplified the gesture coding process by 
tallying the frequency of gestural initiations rather than timing their dura- 
tions. A continuous movement of several rotations counted as one rotation 
initiation. This simpler coding method was sufficient for testing the predictions. 

A primary coder tallied three types of language: exophoric references, 
quantitative words, and parity rule statements, Exophoric references like 
‘this’ or ‘that’ should provide a convenient verbal measure of external 
modeling, because unlike anaphoric references, they point to referents that 
are external to the surrounding sentential context (Halliday & Hasan, 1976). 
The expression, “This goes that way,” contains two exophoric references, 
but the expression, “Odd gears. , . this is like the earlier one,” contains no 
exophoric references because the “this” makes an anaphoric reference to 
the odd gears in the preceding clause. Quantitative words referred to the 
cardinal properties of the gear chain. For example, the expression “Nine 
gears; that’s an odd number,” has two quantitative expressions. This 
category of expression also included questions like, “How many?” Quanti- 
tative expressions should be good indicators of rule use as participants 
became primarily concerned with the numerosity and parity of the problem. 
Ordinal uses of number words were not coded as quantitative expressions. 
For example, the enumerative sequence, “Gear one goes this way, gear two 
goes like this, and the third one goes like this,” does not contain any quanti- 
tative references according to the coding scheme. Ordinal expressions were 
excluded from the quantitative category, because they reflected people’s 
reasoning down a series of gears. 

An independent judge coded three randomly selected dyads. The cor- 
relation between the primary coder and the independent judge was R = .95 
for the gestures. Coding of parity rule statements, exophoric words, and 
quantitative words had no disagreements. The primary coder and judge had 
94% agreement on judgments of gesture and reference simultaneity. 

Results 

Replicating Experiment l-Gesture and Latency Data 
Of the 12 dyads, nine mentioned a parity rule for both configurations, one 
dyad was unable to solve the closed-chain problems, and two induced an 
alternative procedure for solving the problems (see below) and never men- 
tioned a parity rule. Because our predictions focus on transitions between 
models and rules, we analyze the nine dyads who induced the parity rule. 
Figure 5 shows that four of the nine dyads made errors and that their errors 
were confined to the change problems and the first locking problem. For the 
open-chain problems, the fourth problem was the mode of when the dyads 
first mentioned the parity rule with the average number of completed prob- 
lems at 3.2 (1.4 SD). For the closed-chain problems, eight of the dyads 
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Figure 5. Errors for Dyads who Induced a Parity Rule (Experiment 2). The four different 
shadings for the graph represent each of the four rule-inducing dyads who made errors and the 
problem(s) on which they made an error. 

explicitly stated a parity rule during the problem solving. The ninth pair 
communicated more tacitly and did not explicitly mention a closed-chain 
parity rule until debriefing. Problem-solving latencies may be used to infer 
when this ninth pair induced the rule. The closed-chain latencies for the 
eight, rule-mentioning dyads dropped six fold from a mean of 77.3 s (84.3 
SD) on the first rule-mentioned problem to a mean of 12.3 s (27.0 SD) on 
the immediately following problem; F(1,7) = 7.36, p< .05. This result sug- 
gests that the dyad who did not explicitly mention the parity rule had actually 
induced the rule between the fifth problem (192 s) and the sixth problem 
(17 s). This eleven-fold drop in latencies did not elevate for subsequent 
problems. Including all nine dyads, the third problem of the closed-chain 
was the mode of rule induction and the average number of completed problems 
was 2.7 (0.7 SD). 

Figure 6 shows that the latencies and gestures dropped after dyads ex- 
plicitly mentioned a parity rule. At this point we compare measures from the 
first six problems in each configuration; the change problems are treated 
separately below. Because response times were used to infer the point of 
induction for one dyad, we only consider gestures statistically. The analysis 
contrasted the average number of rotational hand movements per problem, 
before and after dyads stated a parity rule for each configuration. This 
yielded four within-dyad measures capturing the factors of pre-/post-induc- 
tion and configuration. There was a reliable drop in gestures after the state- 
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Figure 7. Gesture Density for Non-Change Problems (Experiment 2). 

ment of a rule;F(1,8)= 16.8,MSe= 131.59,p< .Ol. There was also a main 
effect of the problem configuration with more gestures occurring overall in 
the closed-chain problems; F(1,8)= 11.6, MSe = 86.8, p< .Ol. As may be 
seen in Figure 6 and was supported by the pre-/post-induction by configura- 
tion interaction; F(1,8) = 8.4, MSe = 82.5, p< .05, this effect was primarily 
due to the larger number of gestures prior to rule induction in the closed 
configuration. The effects of induction and configuration were replicated 
analyzing the gesture densities shown in Figure 7. There was a pre-/post- 
induction effect; F(1,8) =46.5, MSe= .Ol, p< .Ol, a configuration effect; 
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TABLE 2 

References by Gestures (Experiment 2) 

Simultaneous Gestures Exophoric Words Quantitative Words 

Rotating 297 (82%) 79 (25%) 

Not Rotating 65 (18%) 232 (75%) 

F(1,8) = 8.9, MSe= .02,p< .05, and a pre-/post-induction by configuration 
interaction; F(1,8) = 5.86, MSe = JO, p< .05. 

The pre-/post-induction by configuration interactions merit further 
explanation. Figure 7 shows that the gesture densities for the pre-induction, 
closed-chain problems were relatively low compared to the pre-induction, 
open-chain problems. Yet, Figure 6 shows that the frequency of gesturing 
was greater for the pre-induction, closed-chain problems compared to the 
pre-induction, open-chain problems. The videotapes reveal that these oppos- 
ing interactions were an artifact of the extremely long latencies for the first 
closed-chain problems. During the first locking problems, perhaps due to 
frustration, dyads typically spent substantial time off-task by questioning 
the purpose of the experiment and discussing incidental matters. Although 
we do not quantify the off-task behaviors for the different problem blocks, 
our interpretation of the low gesture density for the pre-induction, closed- 
chain block is that it does not accurately reflect the proportion of actual 
problem-solving time spent using gestures. 

A second aspect of the data that merits discussion is the relatively high 
latency and gesture frequency that followed rule induction in the closed- 
chain problems. This occurred because the member of the dyad who dis- 
covered the rule often explained the rule and locking behavior to the other 
member. For example, one individual said, “When there are an odd number 
of gears, these two top gears are both trying to turn this way. But touching 
gears can’t both turn this way. See how they jam each other.” Once both 
members of the dyad understood the rule and the locking behavior, the 
latencies and gestures dropped to minimal levels, paralleling the case for the 
open-chain problems. For example, on the sixth problem of each configura- 
tion, the average latencies were less than 5 s and gesturing times were less 
than 1 s. 

Verbal Evidence of Rule Induction and Rule Use 
Table 2 shows that exophoric references (e.g., “this one”) were typically 
accompanied by rotational gestures, whereas the quantitative references 
were not; x2(1) = 217.77, p< .Ol. This indicates that exophoric references 
were made with respect to dynamic gestural models. Figure 8 shows the 
rate of language use per second. For both configurations, dyads used ex- 
ophoric references prior to rule induction and quantitative references after 
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quantitative references per second split by the statement of the parity rule (nonchange prob- 
lems only). 

induction. To show this cross-over statistically, we computed each dyad’s 
rate of exophoric and quantitative word use per second before and after 
induction in both configurations. The eight measures created a reference 
type by pre-/post-induction by configuration within-subject design. There 
was a reference type by induction interaction; F(1,8) = 60.9, MSe= .Ol, 
p< .Ol. The interaction was replicated using number of expressions per 
problem; F= 15.8, and total number of expressions; F= 16.1. 

Effects of Change Problems on Rule and Model Use- 
Gesture and Latency Data 
Figure 9 shows the effect of the two change problems on latency and ges- 
turing. For the open-chain change problems both measures of modeling 
increased compared to the immediately preceding problem. In contrast, 
there was little evidence of a fallback to modeling for the closed-chain 
change problems. A change/no-change by configuration within-subject 
design compared dyad latencies and gestures for the last prechange problem 
to the average of the two change problems in each configuration. The key 
two-way interaction was significant; F(2,7)= 5.66, p-c .05, HF= .65. Com- 
pared to the other three cells in the design, the open-chain change problems 
led to elevated gestures and latencies; F(l,S)= 7.7, A4Se = 11.9, p< .OS; 

F(1,8)= 11.2, MSe= 82.4, p< .05, respectively. The fact that dyads fell 
back to modeling for the open-chain change problems supports the claim 
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that people generally model in situations where their rules are too narrow, 
and not just in situations that introduce unsuspected outcomes (i.e., lock- 
ing). The fact that the dyads did not model for the closed-chain change 
problems supports the claim that participants did not treat the closed-chain 
problems as completely novel. The relevant information for solving the 
closed-chain change problems must have come from the open-chain problems. 
Otherwise, dyads should have modeled the closed-chain change problems as 
they had done for the open-chain change problems. 

Anecdotal Evidence on Why Three Dyads 
Did Not Induce a Parity Rule 
One dyad never discovered the locking outcome and sometimes continued 
for 300 s until the experimenter moved on to the next problem. The other 
two dyads who did not reach criterion solved all the problems but did not 
induce a parity rule. Instead, they found an alternative strategy to reduce 
their time and effort. Due to then + I sequential presentation of the problems, 
they determined that the next problem would have the opposite answer of 
the immediately preceding problem. One dyad determined this by noting 
that the answers were alternating, and the other dyad simply added one 
more gear to each subsequent problem. For example, if the seventh gear of 
a seven gear chain turns clockwise, then the eighth gear in an eight gear 
chain should turn counter-clockwise because it touches a clockwise gear. 
Thus, two dyads induced procedures for solving the problems in their pre- 
sented sequence instead of inducing a parity rule for solving the problems in 
any sequence. Their data looked similar to the data of the dyads who induced 
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the parity rule. At first they modeled the problems in each configuration; 
latencies, rotational gestures and exophoric references were high. But once 
these two dyads induced the strategy of relying on the problem sequence, all 
the measures dropped. The number of quantitative references, however, did 
not increase. They were not concerned with the numerosity of a problem so 
much as they were concerned with the behavior of the last gear in the pre- 
ceding problem. 

Discussion 
The explicit statements of the parity rule indicated that the dyads induced 
their rules around the third problem for each gear configuration. This sup- 
ports the apriori separation of problems into blocks of three in Experiment 1. 
The changes that occurred in dyad behavior before and after rule statement 
fit our overall story. Prior to the statement of the rule in each configuration, 
dyads exhibited modeling behavior through long latencies, frequent rota- 
tional gestures, and exophoric references (e.g., “it goes this way”). After 
stating their rules, dyads exhibited rule-based behaviors through short 
latencies, few gestures, and frequent quantitative references. 

The change problems provided evidence supporting two hypotheses 
regarding fallback modeling. The modeling for the open-chain change 
problems supports the hypothesis that people will generally model when 
their rules are too narrowly defined, and not just in the especially difficult 
case of the locking gears. For example, although dyads had a parity rule for 
the open-chain problems that began with a clockwise motion, they modeled 
for a new problem that began with a counter-clockwise motion. The second 
hypothesis was that the closed-chain problems are not treated as completely 
novel problems. Supporting this hypothesis, the lack of modeling for the 
closed-chain change problems indicates that dyads had induced a closed- 
chain rule that incorporated information from their open-chain solutions. 
The dyads had not solved a closed-chain problem with an initial counter- 
clockwise motion, and therefore, they must have mapped the information 
from the open-chain change problems that they had modeled. 

The empirical evidence indicating when dyads modeled suggests a rational 
analysis that differentiates three modeling situations-novel, generalization, 
and rule-failure situations. Each of these situations is precipitated by the 
inadequacies in one’s body of rules. However, one can differentiate the 
character of these inadequacies. Even though people may be blind to their 
type of rule inadequacy prior to developing surrogate evidence, the different 
situations have consequences for how much modeling will be necessary to 
develop a new rule. 

To develop the analysis of the three modeling situations, consider a 
parity rule as having an input-output form. For example, if the input is 
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odd then the output is clockwise. In a novel situation where people have no 
relevant rules, the range of the output is necessarily undefined; one does not 
know the range of possible behaviors available to a system. The initial 
open-chain modeling is an example. From debriefing, we found that partici- 
pants were not previously familiar with problems of this structure. Thus, the 
depictive evidence of clockwise and counter-clockwise motions helped 
define the possible outcome space of clockwise and counter-clockwise. In a 
generalization situation, the output range of a rule is correct, but the input 
range is too narrow. The modeling for the open-chain change problems is 
the relevant example. At this point, the dyads’ rules already had the out- 
come range of clockwise and counter-clockwise but did not have provisions 
for a counter-clockwise (or right-hand side) input for the initial gear. This 
led to different empirical outcomes than in the novel problem situation. In 
the novel situation, people took three trials to induce a rule. In the general- 
ization situation, dyads only required one trial to refine their rules, as shown 
by the fact they did not need to model the change problems in the closed 
chain. Finally, in a fallback situation, an existing rule has an output range 
that does not include the correct possibility and people need evidence to find 
the missing outcome. Once found, people may capitalize on the knowledge 
in their original rule. Evidence supporting a unique category for fallback 
modeling comes from the closed-chain problems. First, unlike the general- 
ization situation, dyads needed to discover the locking outcome and it took 
2.7 successful trials to induce a new rule (although one locking problem is 
sufficient for inferring the rule modification). Second, dyads did not model 
the closed-chain change problems. Presumably, this was because their 
induced closed-chain rule incorporated the generalized rule developed for 
the open-chain change problems. Thus, the first closed-chain problems were 
not completely novel because dyads could use their open-chain knowledge 
to inform their closed chain rule. 

To further refine the account of the interplay between models and rules, 
we consider why two dyads induced a problem-solving solution that we call 
the Add-On strategy. These dyads solved each successive problem by view- 
ing it as an n + I problem where the n represents the prior problem and the 
+ I represents the addition of one more gear in the current problem. An 
issue that may bear on the transition between models and rules is why these 
two dyads induced the Add-On strategy but not the parity rule. Our hypo- 
thesis is that the Add-On strategy inhibited the discovery of the parity rule 
because it made a gear’s numerical position within a chain irrelevant. For 
example, one could treat a fourth gear as “one more,” and consequently its 
evenness would not be readily available. Because the numeric positions of 
the gears were not simultaneously represented with their motions, the paral- 
lel alternation between motions and number parities may not have been 
detected. Experiment 3 examined this possibility. 
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EXPERIMENT 3 
These first two experiments primarily focused on the conditions that pre- 
cipitate depiction. The current experiment explores how people move from 
a depictive representation to a numerical one by examining the representa- 
tions that mediate the transition. The first two experiments treated the tran- 
sition from models to rules as though it were instantaneous. However, as 
pointed out by Duncker (1945) and others (e.g., Kaplan & Simon, 1990), 
there is a gradual restructuring of a problem prior to a moment of insight, 
inductive or otherwise. Prior to the moment of inductive insight, we saw 
hints of two restructuring processes. Each of these processes yielded a 
representation that set the stage for fashioning a rule that no longer required 
analog spatial information. We call the two aspects of the first process&d- 
ing and codifying. In fading, attributes of the referents are removed from 
the model. In codifying, the results of the model simulations are codified 
into verbal labels. In the second process, quantitative casting, the gear 
motions are corepresented with the numerical properties of the gears. It is 
our hypothesis that fading and codifying are natural outcomes of repeti- 
tious modeling, and that quantitative casting enables the move from a 
simple empirical pattern to a number-based rule. The following paragraphs 
delineate these processes in more detail. Figure 10 provides a schematic. 

One of the strengths of depictive modeling is the lack of abstraction. It 
allows people to reason over a relatively complete representation of a situa- 
tion before they have selected attributes for special attention (Reese, 1970). 
This may give depictive models some of their power in handling novel 
situations. They provide an opportunity to consider aspects of a problem 
that a symbolic rule might exclude (Schooler & Engstler-Schooler, 1990). By 
falling back to a model, for example, people can discover the jamming out- 
come that was not included in their open-chain parity rule. A model’s inclu- 
siveness, however, is also a liability. People are not able to “run” models of 
complex systems whole scale (Hegarty & Sims, 1994). Thus, when depictive 
models become too complex, or are repeatedly deployed, people need ways 
of simplifying them. Fading and codifying are two processes by which 
depictive models become simplified. 

Fading occurs when elements of the original problem representation are 
dropped, or are replaced by a label through codification. For example, on 
first exposure to the problems people might imagine the texture of the gear 
faces (e.g., a smooth metallic sheen). As texture plays no role in the simula- 
tions, it fades quickly leaving a more schematic image of the gears. In con- 
trast, people might also begin with a depiction that includes the nonslipping 
surfaces of the gears. This aspect of the model is essential for inferring the 
forces interacting between the gears. Consequently, this feature may not 
fade until the dynamics of the gears can be codified into a pattern of alter- 
nating motion labels. 
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Figure 10. A Schematic Example of Fading, Codifying and Quantitative Casting. 

Codifying refers to the process by which the causes and intermediate results 
in a simulation are labeled into discrete entities. For example, while pro- 
pagating motion along the chain of modeled gears, people might state 
“clock, counter, clock. . .” Eventually, they might apply the pattern of 
alternating labels to static spatial tokens without a depiction of the gear 
motions. For example, they could imagine the gears as tick marks on a line, 
or use a separate finger to represent each gear in an external representation. 
They might say “clockwise” and lift one finger, then say “counter-clock- 
wise” and lift the next finger, and so forth. By abridging the dynamic aspects 
of the model into a simple, labeled regularity, they no longer need to model 
the forces acting between the gears (cf. Weld, 1986). It is our hypothesis that 
people fade and codify the dynamics of their models over repeated trials. 
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Supporting evidence would be found if people switched from rotational 
hand gestures to “ticking” hand gestures by which they simply mark off an 
imaginary gear without representing its dynamics. 

Fading and codifying diminish the demands of maintaining a continuous 
spatial transformation. One question is whether these faded representations 
still model nondynamic spatial properties of the gears, such as the left to 
right propagation of changes, or whether they are more like an ordered list 
(e.g., 1,2,3. . .). One way to address this question is to see what happens if a 
problem switches the position of the initial gear from the left- to right-hand 
side of the gear chain. If the codified representations still model spatial 
relations, then people should change the direction in which they “tick” 
through the gears. 

To achieve the final abstraction in which spatial and temporal order are 
no longer modeled, quantitative casting may play an important role. Quan- 
titative casting is a subset of symbolic casting in which the properties and 
relationships within a model are brought into the purview of a higher order 
and more articulated symbol system. Empirical pattern finding is only one 
piece of the induction story. For example, simply aggregating (Weld, 1986) 
or chunking (Laird, Rosenbloom, & Newell, 1986) the results of previous 
simulations is insufficient to transform these aggregations into a rule that 
relies on numerical properties like odd and even. A second piece of the story 
involves linking the empirical patterns to a symbol system with predefined 
structural properties, such as odd and even. This type of linking, or casting 
as we call it, occurs frequently in scientific research when a phenomenon is 
distilled to a few critical features, parameterized, and folded into the struc- 
ture of a theory. 

In the current case, quantitative casting may occur through the simul- 
taneous consideration of number and model. As one enumerates, “Gear 
one is clockwise, gear two is counter-clockwise. . . ,” the alternating sequence 
of gear motions helps organize the numbers. In terms of our metaphor, the 
numbers are cast, or shaped, around the patterns generated by the model. 
This numerical shaping supports the realization of an alternating mathe- 
matical structure-odds and evens. 

As an alternative to casting, one might consider trying to map numbers 
onto the gear problems whole scale. Imagine, for example, that a person has 
modeled short chains and is then confronted with a problem of 120 gears. 
Further imagine that at this point the reasoner has only abridged the model 
into a pattern of alternating labels. As a problem of this magnitude is cum- 
bersome to model completely, the person may attempt to find a mathema- 
tical principle that can simplify the problem. However, one confronts the 
question of which mathematical principle to apply; a sequence of numbers 
has innumerable patterns. As a representation of number has not been 
molded to the alternating motion, there are few constraints on what pattern 
is chosen. For example, one could try a factoring strategy by looking for 



486 SCHWARTZ AND BLACK 

factors that divide evenly into 120. A salient number is ten. Subsequently, 
one might try to find a ten-gear rule, such that given the motion of the first 
gear, one can quickly determine the motion of the tenth gear. Finally, one 
might work through 12 applications of the ten-gear rule. Although this 
approach seems inefficient, if the pattern of odd and even has not been 
foreshadowed in the model, factoring is a salient approach for breaking 
down large numbers into more manageable chunks. 

As a provisional test of the value of quantitative casting, we examined 
whether participants who corepresented the number and motion of each gear 
induced a parity rule. We identified this corepresentation through Enumeru- 
tions. An enumeration occurs when people explicitly count out the number 
of a gear as they indicate its direction of motion, either gesturally or ver- 
bally; for example, “One is clockwise, two is counter-clockwise. . .” The 
effect of corepresenting number and motion through enumerations was 
compared to the effect of Iterations. With iterations, an individual moves 
through the chain of gears without explicitly counting each gear. If our 
hypothesis about the value of quantitative casting is correct, then people 
who use an enumerative strategy should induce parity rules more often than 
people who simply use an iterative strategy. An alternative hypothesis might 
be that people induce the parity rule solely on the basis of the association 
between the total number of gears and the final answer, regardless of the 
evidence generated by their modeling activity. If so, enumerations should 
not yield an inductive advantage. 

In the first two experiments, the intermediate representations between 
rule and model passed too quickly to observe in detail. In this experiment, 
using 26 open-chain problems, two manipulations slowed down and stalled 
the process of induction so that we could see the component processes more 
clearly. One manipulation was to use numerically unsophisticated partic- 
ipants who would hopefully be more transparent than graduate students in 
their efforts to apply arithmetic concepts. The second method for capturing 
intermediate representations was to encourage participants to find a simpli- 
fication to modeling, such as a parity rule, and then remove its advantages 
for subsequent problems. To encourage a simplification, there were problems 
with 121, 66, 218, and 51 gears. These problems are so large that they cue 
one to find a more efficient solution than modeling. However, before any 
resulting rule could become secure, the next problem changed the parameters 
of the problem (e.g., the direction of motion) or used a simple and pre- 
viously solved problem. For the former case, the new rule may be ineffec- 
tively narrow for the changed problems. For the latter case, it may be more 
effortful to use the new rule than to replay a simulation for a simple problem. 
If these prevented rule use, participants would not have a chance to practice 
and make their rules firm. This would have the effect of putting the partici- 
pants on the fence between their rules and models and allow observations of 
the representations that stand between the two. 
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Method 

Participants 
Sixteen lOth- and 1 lth-grade students from a boys parochial school in New 
York City voluntarily participated in the experiment. None of the boys had 
entered the later sequences of high school mathematics and were below 
average on standardized tests of mathematics and science achievement 
(Cooperative Admissions Examination, NEDT, and SAT). One boy was 
unable to complete the task. Two others stated, after the fact, that they 
already knew the parity rule, because they were slot car enthusiasts. These 
two participants unerringly and immediately solved all the problems with- 
out the use of gestures. Because the focus is on the intermediate representa- 
tions, these participants were not included in the data analyses. Thus, we 
report data from 13 participants. 

Design 
There were 26 open-chain problems. Twenty-two problems had from 3 to 10 
gears, and four had more than 50 gears. A small problem always followed a 
large problem to lure the student back into modeling. The base of Figure 12 
provides an overview of the problem sequence and the problem categori- 
zation according to chain size and the initial gear’s motion and position. 
Contiguous, small-chain problems that did not vary the position or motion 
of the initial gear were presented in either strict or loose ascension (e.g., 
3,4,5,6 vs. 3,5,4,6). This manipulation had no effect and will not be consid- 
ered further. 

Procedure 
Individual participants faced a video camera with the experimenter out of 
view. They were directed to be sure of their answer, and if they answered a 
problem incorrectly, they were to continue working on the problem until 
they reported the correct answer. The participants received instructions to 
think aloud. To practice these directives, the participants solved a warm-up 
problem about car steering. The experimenter then showed a two-inch spur 
gear and stated, “All of the following problems will be about gears that 
look like this one.” Otherwise, the procedures followed Experiment 2. 

Coding 
A problem trial was coded as eliciting rotating motions, ticking motions, or 
no motions (i.e., neither of the other two). As before, rotating motions 
indicated that people were depicting the gear dynamics. Ticking motions 
indicated that people had faded the dynamics of their model but were still 
working sequentially along the gear chain. A ticking gesture occurred when 
a participant raised or pointed his fingers or hands (without rotating) for at 
least three times successively. No motion indicated that a participant was no 
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longer using an external model, as would be the case if he employed a parity 
rule. To simplify coding, and because rotating and ticking gestures rarely 
occurred during the same problem, each trial received a single coding. Of 
the total 338 trials across subjects, 8 had both ticking and rotational ges- 
tures. Those 8 are counted as half occurrences in each of the two gesture 
categories. An independent judge and the primary coder had 95% agree- 
ment on categorizations using a random sample of four individuals. 

The problem-solving strategies were coded into mutually exclusive cate- 
gories with each problem receiving a single coding. Although infrequent, if 
people used multiple strategies within a single problem, they were coded 
with their final strategy prior to answering the problem. The coding scheme 
was objective and only 4(‘10 of the problems received an Unknown categori- 
zation. The Iterative category was indicated either by a succession of alter- 
nating verbal labels (e.g., “clock, counter, clock”), or by a succession of 
three or more ticking or rotational hand movements. A problem fell into the 
Enumerative category if participants explicitly mentioned the number of each 
gear in conjunction with either a statement of the direction of that gear, or a 
ticking or rotational hand movement for that gear. The Iterative and Enu- 
merative categories were mutually exclusive. The Add-On category was 
determined according to one of three criteria: (a) a participant explicitly 
stated that he was tacking on one or two more gears to the result of the pre- 
vious problem; (b) the use of a single ticking or rotational motion (or, two if 
the new problem were larger than the last); or (c) the person responded 
quickly and correctly. To ensure that the fast response was not due to a 
parity rule, it had to be coupled with a slow response for the next problem 
that involved a large number of gears. For the large problems, the Add-On 
strategy is ineffective. Thus, if a person took a long time for the next large- 
chain problem, he did not know the parity rule on the prior problems and 
was using the Add-On strategy. The Parity category was determined by an 
explicit mention of “odd” or “even,” or a short latency coupled with an 
explicit mention of “odd” or “even” on a prior or following problem with 
no intervening alternate categorizations. The Factor category was easily 
identifiable as the boys verbally searched for good factors, worked out divi- 
sions, and pondered remainders or fractional answers. Nobody considered 
the factor of two which might have lead to the discovery of the odd/even 
pattern. A Guess coding was used when a boy stated that he was guessing. 

Although the cross-tabulation of the gesture and strategy codes in Table 3 
does not bear upon the predictions in this experiment, these data help vali- 
date the use of the different categories of gesture and strategy. As in the 
case of the first two experiments, the parity rule was not accompanied by 
gestures whereas modeling was. This result is somewhat biased in that ges- 
turing helped identify how a problem-solving trial should be categorized. It 
should also be noted that the relatively few Enumerative trials, compared to 
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TABLE 3 

Frequency of Problems by Strategy and Gesture Types (Experiment 3) 

Strategy 

Gesture Iterate Enumerate Add-On Parity Factor Guess Unknown Totals 

Rotating 30.5O 17.5 3.0 6.0 0.5 0.0 0.0 57.5 

Ticking 75.5 7.5 3.0 1.0 7.5 1.0 0.0 95.5 

Neither 23.0 5.0 26.0 90.0 5.0 19.0 14.0 185.0 

Totals 129.0 33.0 32.0 97.0 13.0 20.0 14.0 338.0 

a Trials on which a participant used both rotating and ticking gestures received a half 
coding in each category. 

.-I 

:.: None 

0 Ticking 

n Mixed 

W Rotating 

1st 2nd 3rd 4th 5th 6th 7th 8th 

First Eight Problems 

Figure 11. Changes in Gesturing over the First Eight Problems (Experiment 3). 

Iterative trials, resulted from the fact that those who enumerated learned to 
use the parity rule (see below). In contrast, those who iterated did not find 
the parity rule and employed the Iterative strategy across problems. 

Gestural Evidence for the Progression to Faded Models 
The first analysis considers the fading and coding of the models. Figure 11 
shows the number of participants who solved the problems with rotating 
gestures, ticking gestures, both gestures, or neither for the first block of 8 
problems. There was a progression from rotating gestures to ticking ges- 
tures to neither for the largest problem of 131 gears (i.e., problem number 8). 
These results reflect the progression from (1) a dynamic gestural model to 
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Figure 12. Changes in Gesturing over all Twenty-six Problems (Experiment 3). 

(2) a faded static model that attached alternating labels to simple ticking 
motions to (3) a numerical rule that replaced the labels and static model 
altogether. 

Through the full sequence of 26 problems shown in Figure 12, over 50% 
of the rotating gestures occurred on the first six problems compared to 10% 
of all the ticking motions. Twelve participants used rotating gestures during 
the experiment, of which nine also used ticking gestures. Once these nine 
participants progressed to ticking motions, they rarely returned to their 
more dynamic, rotating motions. For each problem that these nine partici- 
pants solved using ticking gestures, the average number of previous problems 
that used rotating gestures was 4.7, whereas the number of following prob- 
lems that used rotating gestures was 0.3; F(1,8) = 16.3, MSe = 5.2, p< .Ol. 
This indicates that the gestural models that represented rotational motion 
were faded into models that simply represented the position of each gear 
through a simple ticking motion. 

The next analysis investigates whether the faded and codified models 
included spatial information. By the nineteenth problem, which first switched 
the initial gear from the left- to the right-hand side, one participant was 
using rotational gestures and eight were using the ticking gestures that 
indicate they had faded the gear dynamics. These eight participants are of 
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interest because they can test whether the faded representations still modeled 
spatial information. If they did, then changing the location of the initial 
gear should have affected individuals’ reasoning over their models. If the 
faded models were simply ordered lists (e.g., 1,2,3. . .), the location change 
should have little effect. When the problems switched the initial gear from 
the left- to right-hand side of the chain, seven of the eight participants 
reversed the direction of their ticking motions. For all 90 prior problems 
during which these eight participants had modeled the gears with their 
hands, they had proceeded left to right, but then on the first right-hand 
problem, seven of the eight participants reversed and moved right to left. 
During this reversal they used ticking gestures. 

Verbal Evidence for the Effects 
of Quantitative Casting on Parity Rule Induction 
The following analyses consider whether the simultaneous consideration of 
gear number and motion facilitated rule induction, as would be predicted if 
quantitative casting is an important piece of the induction process. The 
effect can be seen most simply by partitioning the individuals according to 
the relative frequency of enumeration. An Enumerative trial indicates that a 
participant was corepresenting number and motion (e.g., one-clock, two- 
counter. . .). Dividing the number of Enumerative trials by the total number 
of Enumerative and Iterative trials yields the percentage of modeling trials 
that were Enumerative.* No participant had an enumeration rate between 
6% and 15 070. This gap provided a natural partition of high and low users of 
enumeration. Table 4 shows that those participants who frequently enumer- 
ated also induced the parity rule; x2( 1) = 4.99, p < .05. For those who discovered 
the rule, the average percentage of modeling trials that were categorized as 
Enumerative was 34.2% (34% SD). In contrast, for those participants who 
did not discover a parity rule, the average percentage of Enumerative trials 
was 3.0% (3% SD).) 

An alternative analysis using strategy frequency also shows the impor- 
tance of quantitative casting. The number of Enumerative and Iterative 
problems for each person were within-subject measures capturing the fac- 
tor of problem-solving strategy. Whether a person induced a parity rule 

2 We do not include the Add-on problems. There was no way of determining how people 
figure how many gears to add to the prior chain. For example, if the previous problem had 7 
gears and the new problem had 9 gears, we could not tell if the participant was silently count- 
ing, “7,8,9,” or if the participant silently thought, “I need to model two more.” 

’ Of interest are the two participants who did not enumerate but did induce a parity rule. 
One had no modeling episodes at all. making it impossible to calculate a percentage. The other 
had six Iterative trials and no Enumerative trials. Two possible explanations for how these two 
participants managed to induce the parity rule without explicitly enumerating are that either 
they silently enumerated, or they detected the odd-even pattern by using the motion of the final 
gear and the total number of gears in the chain. 
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TABLE 4 

Frequency of Participants Who Induced Parity Rule 

Broken Down by High and low Users of Enumerations (Experiment 3) 

Percent of Modeling Episodes 

Coded as Enumerative Induced Rule 

Never 

Induced Rule 

Participants with less than 6% 2a 5 

Participants with more than 15% 6 0 

’ One of these two participants had no Iterative or Enumerative episodes. 

was a between-subjects factor. For those eight individuals who induced a 
parity rule, the average number of problems using an Enumerative strategy 
was 3.8 and the number of problems using an Iterative strategy was 4.6. For 
those five individuals who did not induce a parity rule, there were 0.6 Enu- 
merative problems and 18.4 Iterative problems. This created a reliable inter- 
action between strategy and whether a person induced a parity rule; fll, 11) 
=20.47, MSe=21.5, pc .Ol. 

Of the five individuals who did not learn the parity rule, four used a factor 
solution. These four boys spent considerable time and effort looking for 
factors that divided evenly into the total number of gears. Some of the 
factors attempted were 3, 7, 10, and 11. The fifth boy indicated that he was 
guessing by stating that he always used the opposite of the first gear’s direc- 
tion for large problems. In these five cases, the factor and guessing solu- 
tions were only applied to problems with large numbers of gears. On the 
other problems, these children primarily used either the Add-On or Iterative 
strategy. 

Discussion 
The evolution of participants’ gestures and strategies provides evidence on 
the intermediate representations that bridge between depictive and numeri- 
cal representations. Generally, participants first gesturally modeled the full 
motions of the gears and stated the direction of rotation for each hand. Next, 
the dynamics of the model were replaced with a simple method of succes- 
sively alternating between the opposites of clockwise and counter-clock- 
wise. At this point, a spatial model was still in play even though the partici- 
pants had faded their gestures into a simple ticking motion and had codified 
the gears’ alternating motions into labels. When the problem started on the 
right-hand side, rather than the left, participants changed the direction that 
they ticked the gears off on their fingers. Simultaneous with the fading and 
codifying, some individuals cast quantitative properties onto each gear. 
Specifically, as they noted the direction of a gear, they also stated the num- 
ber indicating the ordinal position of the gear. This casting of numbers was 
important for the arithmetic properties of odd and even to arise with the 
pattern of motion alternation. Although the final form of the rule was 
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based on the total number of gears and the final answer, shaping the numbers 
to the quasi-empirical structure of the model facilitated the induction of the 
global rule (cf. Kieras & Bovair, 1984). The five boys who did not induce the 
parity rule did not numerically label each gear. Consequently, when the 
problems involved numerous gears, they had few constraints on their math- 
ematical reasoning and searched wildly for factors. 

Although the foregoing progression is a fair portrayal of the sequence of 
events, the measures of modeling were fairly coarse. For example, one can- 
not be sure that when the participants switched from the rotating to ticking 
gestures that they did not simply substitute internal imagery of rotating 
gears for the external gestures. Moreover, there was no control condition. 
Consequently, our causal attributions are speculative. For example, one 
cannot be sure that quantitative casting enabled the induction of the parity 
rule. Perhaps, rather than mediating the discovery of the rule, the enumera- 
tions were simply a side-effect of some underlying variable that also yielded 
the parity rule. To test the functional role of quantitative casting one would 
need a more intrusive methodology than employed here. So, just as one 
might ask people to sit on their hands to see if gestures play a functional role 
in solving the gear problems, one might also prevent people from enumerat- 
ing as they solve these problems. 

GENERAL DISCUSSION 

Formulating depictive models as surrogates for perceptual evidence gen- 
erated a hypothesis space that was borne out through over-lapping predic- 
tions and convergent lines of evidence. As in situations where people would 
want to observe the world, modeling occurred when people confronted a 
novel problem, when people needed to generalize rules, and when their rules 
failed. In these three situations, people modeled the problems on their 
hands, took a relatively long time conducting their simulations, and used 
language referring to their models. 

Like observations of nature, model simulations served as the raw data 
for inducing abstract rules. This occurred when people abstracted regulari- 
ties from their models’ behaviors and cast numerical concepts about these 
regularities. Changes indicating the induction of a parity rule occurred 
around the third problem as predicted on the theoretical grounds that it 
takes at least two examples to induce a binary pattern. Empirically, people 
actually stated a parity rule at the point where the behaviors changed. Fig- 
ure 10 provides a schematic of how people transformed a dynamic model 
into a static model with alternating motion labels. After their initial simula- 
tions, people no longer modeled the dynamic relations between the gears 
using rotating gestures. Instead, they codified the results of the simulations 
into a pattern of alternation by which they could subsequently point to an 
imaginary gear and state its direction of motion. This process is illustrated 
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in the second row of Figure 10. The third row of the figure represents the 
casting of numbers onto the model depictions. The importance of casting an 
articulated symbol system onto the model was demonstrated by the fact that 
those individuals who did not induce a parity rule were also the ones who 
did not cast quantities onto their models. 

To complement the conceptualization of depictive models as surrogates 
for experience, one may think of numerical rules as simple theories about 
experience. Reflecting the properties of theories, many participants employed 
rules when they had them. The rules formalized attributes of the problems 
and did not require the time and effort of multiple simulations chained 
together. Moreover, the rules allowed individuals to reason about symbolic 
relationships like contradiction and parity. Quick response times provided 
evidence of rule use, the disappearance of rotating gestures provided evi- 
dence of reasoning without a dynamic model, and the switch to quantitative 
language provided evidence of reasoning that relied on numerical relation- 
ships. The error data from Experiments 1 and 2 suggest that people tended 
to over-extend their rules before they fell back to modeling, much as one 
might over-extend a theory prior to its disconfirmation. The bulk of errors 
occurred when the parameters of a problem changed in such a way that a 
newly induced rule would not apply. However, many of these errors may be 
simply attributable to the increased difficulty of the closed-chain problems. 
Further research is necessary to develop a clearer understanding of the ten- 
dency to misapply a rule (or, theory) when the evidence from a model (or, 
experiment; Kuhn, 1989) would be more appropriate. 

In general, depictive models are useful in situations where one does not 
have a formal method for deriving outcomes; they generate phenomena 
unknown to a limited collection of rules. Rules are useful in that they are 
efficient and can use formal properties like contradiction and oddness. 
Their separate strengths are perhaps best captured by one boy in the third 
experiment. Although he induced a parity rule after the first few problems, 
the rule was too narrow and ignored important problem parameters. His 
rule could be stated, “If the problem has an odd number of gears, then the 
last gear turns clockwise.” When confronted with a new problem in which 
the initial gear turned counter-clockwise, he applied his previously induced 
parity rule and reached the wrong answer. Rather than generalizing his 
parity rule to handle the parameter change, he settled on a compromise 
between the speed of the rule and the evidence of the model. He created a 
rule stating that all the even gears turn the same way, as do the odd gears, 
and he modeled to see which way the first odd and even gears were turning. 
For example, he would first note the parity of the problem as being even. 
Next he would model two gears to determine which way the first even gear 
in the chain was turning. Because of his rule, he could conclude that the 
motion of this even gear would be the same as the motion of the final gear 
which was also an even. Given the lack of a more general parity rule, this is 
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an ingenious solution that gets the best of both the modeling and analytic 
worlds. We suspect that this strategic shuttling between depictive evidence 
ar_d symbolic formulation is highly characteristic of reasoning about physical 
systems. 
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