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Proximity data can be represented by an extended tree, which generalizes traditional trees by 
including marked segments that correspond to overlapping dusters. An extended tree is a graphi- 
cal representation of the distinctive features model. A computer program (EXTREE) that con- 
structs extended trees is described and applied to several sets of conceptual and perceptual prox- 
imity data. 
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Introduction 

Trees are commonly used to represent proximity relations that emerge, for instance, 
from studies of classification, similarity, and identification. Trees are employed to describe 
the data, explore their structure and model their generating process. They offer a con- 
venient graphical display that is readily interpretable in terms of a hierarchy of clusters 
(Sokal &Sneath, 1963) or in terms of common and distinctive features (Tversky, 1977). 

The simplest tree structure is the hierarchical clustering model (Jardine & Sibson, 
1971; Johnson, 1967) based on the ultrametric inequality, which states that for any triple 
of points the two larger distances are equal. That is, any three points can be labeled x, y, z 
such that d(x, z) = d(y, z) >_ d(x, y). This assumption gives rise to a tree in which all the 
endpoints (leaves) are equally distant from the root. The ultrametric tree is highly re- 
strictive because any two elements of one cluster must be equally similar to any other 
element outside the cluster. This restriction is relaxed in the additive tree (e.g., Cunning- 
ham, 1978; Sattath & Tversky, 1977), where the leaves are not necessarily equidistant 
from the root. The additive tree provides greater flexibility than the ultrametric tree, but it 
too cannot accomodate (nonnested) overlapping clusters because any two clusters in a 
tree are either nested or disjoint. Throughout the paper we use the standard abbreviations 
(e.g., HICLUS, ADDTREE, ADCLUS) for scaling algorithms, and the unabbreviated 
forms (e.g., hierarchical clustering, additive tree, additive clustering) for the respective 
models. 

This article describes a new representation of proximity relations, called an extended 
tree, which accommodates nonnested feature structures while maintaining the basic prop- 
erty of a tree that every pair of points is joined by a unique path. To motivate and 

This research was supported in part by a National Science Foundation Pre-doctoral Fellowship to the first 
author. 

Requests for reprints should be sent to James E. Corter, Box 41, Teachers College, Columbia University, 
New York, NY 10027. A magnetic tape containing both the EXTREE program described in the article and 
ADDTREE/P program for fitting additive trees can also be obtained from the above address. Requests for the 
program should be accompanied by a check for $25 made out to Teachers College, to cover the costs of the tape 
and postage. 

0033-3123/86/0900-7004500.75/0 
© The Psychometric Society 

429 



Smile 

Top 

Neutral Frown 

Even 

430 PSYCHOMETRIKA 

( ) \ 

Bottom 

j / / /  
................ f 

O O 

/ 
. . . . . . .  ~ f r y  

F I G U R E  1 

A factoriaUy constructed set of schematic faces. 

illustrate the proposed representation we begin with an analysis of the proximity between 
faces. 

Similarity of Faces 
Figure 1 presents nine schematic faces (see Chernoff, 1973) constructed factorially 

using three different face shapes (Top-Heavy, Even, Bottom-Heavy) and three different 
expressions (Smile, Neutral, Frown). The subjects (N = 39) were asked to rate the simi- 
larity between all 36 pairs of faces on a nine-point scale, where 1 denotes very low simi- 
larity and 9 denotes very high similarity. The average ratings appear below the diagonal 
in Table 1. 

The rating data reflect the factorial structure of the stimulus set: Each face was 
judged most similar to the other faces having either the same shape or the same ex- 



JAMES E. CORTER AND AMOS TVERSKY 431 

T A B L E  1 

A v e r a g e  S imi l a r i t y  R a t i n g s  (be low d iagona l )  and  P e r c e n t a g e  of  
C o n f u s i o n s  ( a b o v e  d ia~onal )  B e t w e e n  t h e  F a c e s  of  F i g u r e  1. 

T S  T N  T F  ES  E N  E F  BS B N  B F  

TS --- 6.33 6.02 4.68 2.78 1.99 11.58 4.10 4.89 

T N  7.23 --- 6.12 2.11 8.19 1.55 4.11 14.60 3.33 

TF 6.44 6.67 --- 2.68 1.45 6.86 4.24 2.44 12.14 

ES 5.23 2.97 2.56 --- 7.99 7.96 11.02 3.66 4.23 

E N  2.87 5.28 2.64 6.95 --- 4.29 2.33 14.70 2.44 

EF 2.46 2.69 5.46 6.18 6.62 --- 4.99 2.31 12.92 

BS 6.31 3.64 3.05 5.44 3.38 2.87 --- 5.76 5.90 

B N  3.49 6.03 3.21 3.28 5.13 3.26 6.79 --- 4.99 

B F  2.79 3.15 5.87 2.77 2.90 4.85 6.51 6.90 --- 

pression. Such a product structure with two nominal factors, however, is not readily rep- 
resented by a two-dimensional solution. A two-way factorial design can be naturally em- 
bedded in the Euclidean plane only if each of the factors forms a unidimensional array. In 
general, however, proximity data generated by the product of two nominal factors, having 
n and m levels respectively, may require as many as (n - 1)(m- 1) dimensions. Because 
neither the expressions nor the shapes of the faces in Figure 1 are exactly unidimensional, 
an adequate account of the data of Table 1 may require as many as four dimensions. 
Indeed, the multidimensional KYST solutions (Kruskal, Young & Seery, 1977) for these 
data in two, three, and four dimensions accounted for 56%, 69% and 99% of the vari- 
ance, respectively. 

An additive tree also cannot adequately represent a nominal factorial structure. The 
ADDTREE solution of the similarity between the faces is presented in Figure 2. Recall 
that the distance between objects in a tree is given by the (horizontal) length of the path 
that joins them; the vertical lines are introduced for graphical convenience. Figure 2 
reveals three clusters corresponding to the three shapes. Once the faces are grouped by 
shape, however, the tree has no means of representing the fact that faces with the same 
expression are more similar to each other than faces with different expressions. Indeed, 
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FIGURE 2 
Additive tree (ADDTREE) representation of the similarity between the faces of Figure 1. Percentage of variance 

explained by the model, PV = 58%. 

the additive tree accounted for only 58% of the variance, roughly the same as the two- 
dimensional solution. 

A rooted additive tree can be interpreted as a feature tree, in which the length of each 
arc corresponds to the measure of the features shared by all the objects that follow from 
that arc (Tversky, 1977). For example, the length of the arc labeled Top in Figure 2 is the 
measure of the features shared by all three top-heavy faces. The terminal arcs of the tree 
correspond to the measure of the unique features of the respective objects, and the (hori- 
zontal) path-length distance between objects is the measure of their distinctive features. 
For example, the distance between TS and TN in Figure 2 is the sum of the measures of 
their unique features. 

A feature structure is nested if any two clusters of objects (induced by these features) 
are either disjoint or one includes the other (see Tversky & Sattath, 1979). Nested feature 
structures are readily represented by an additive or an ultrametric tree. 

In order to represent graphically feature structures that are not nested, we extend the 
tree model by introducing marked segments. A marked segment is an identified part of an 
arc which appears in more than one place in the tree and is used to denote a particular set 
of features. As in the simple tree (where all segments are unmarked) the distance between 
objects in an extended tree is given by the measure of their distinctive features. The differ- 
ence between the simple and the extended tree is that marked segments representing 
features common to two objects do not enter into the computation of the path-length 
distance between the objects. 

Figure 3 presents an extended tree representation of the factorial similarity data of 
Table 1, obtained using a computer program (EXTREE) described later in this article. 
The three marked segments, corresponding to the three facial expressions (Smile, Neutral, 
Frown) are denoted by S, N, F, respectively. The distance between TS and BS, then, is 
given by the horizontal length of the path between them, disregarding the two occurrences 
of the marked segment S. On the other hand, the marked segment S enters into the 
distance between TS and BN because they do not share the same expression, hence for 
these two faces S is a distinctive rather than a common feature. In this manner, the 
extended tree represents the pattern of similarity induced by the factorial structure: TS is 
closer to BS than to BN, whereas BN is closer to TN than to TS, and so on. 
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FIGURE 3 
Extended tree (EXTREE) representation of the similarity between the faces of Figure l. PV = 99%. 

The EXTREE solution in Figure 3 accounted for 99% of the variance in the simi- 
larity ratings. The additive tree of Figure 2, in comparison, accounts for only 58% with 
the same number of free parameters (15). To achieve the same degree of goodness-of-fit 
with the spatial model, we need a four-dimensional solution, with more than twice as 
many free parameters. To test the stability of the EXTREE solution, we randomly divided 
the subjects into two equal groups and applied the EXTREE program to the data of the 
first (estimation) group. The solution was then correlated with the data of the second 
(validation) group. We repeated this procedure ten times. All ten solutions were essentially 
identical to the solution presented in Figure 3. Furthermore, the average correlation, 
across the ten splits, between the solution of the estimation group and the data of the 
validation group was .975. 

Confusion Between Faces 

The proximity between objects (e.g., faces) can be investigated by using direct judg- 
ments of similarity or by observing the confusion between them in a recall or an identifi- 
cation task. Naturally, the closer the objects the more likely they are to be confused. To 
illustrate the application of EXTREE to confusion data, we conducted a paired associates 
learning study in which the faces of Figure 1 were used as stimuli and nine common first 
names were used as responses. The assignment of names to faces was randomized sepa- 
rately for each subject. The subject was first told the name associated with each face. 
Faces were then presented in random order and the subject's task was to name each face. 
Feedback was given after each trial, and the task continued until the subject correctly 
named all nine faces twice in a row. The proximity of faces i and j was defined as the 
percentage of presentations of j  incorrectly identified as i plus the percentage of presenta- 
tions of i incorrectly identified as j. These values averaged across subjects (N = 39) are 
presented above the diagonal in Table 1. 
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FIGURE 4 
EXTREE solution for the confusion between the faces of Figure I. PV = 98%. 

The comparison of the two halves in Table 1 shows that the correlation between 
similarity and confusion is far from perfect (r = .61). Furthermore, the discrepancy be- 
tween the two indices is highly systematic: Similarity ratings were influenced by shape 
more than by expression, whereas identification errors exhibited the opposite pattern. For 
each subject we computed the difference between the average similarity of the faces differ- 
ing only in shape with the average similarity of the faces differing only in expression. 
Faces differing in shape were rated significantly less similar than those differing in ex- 
pression (t(38) = 14.14, p < .001). In contrast, faces differing in expression were confused 
more often than faces differing in shape (t(38) = 4.79, p < .001). This pattern is reflected in 
the respective trees. Shape emerges as the primary classification in the trees (Figures 2 and 
3) of the similarity ratings, whereas expression emerges as the primary classification in the 
trees derived from the confusion data (see Figure 4). 

The Distinctive Features Model 

The extended tree (see Figures 3 and 4) as well as the additive tree (Figure 2) can be 
viewed as instances of the distinctive features model, also called the symmetric difference 
metric (Restle, 1959). In this model each object x is characterized by a measurable col- 
lection of features, denoted X, and the distance between objects is given by the measure of 
their symmetric difference. Formally, consider a set of objects s, a set of features S, and a 
mapping that associates each object x in s with a set of features X in S. Both s and S are 
assumed to be finite. A dissimilarity function d satisfies the distinctive features model if 
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there exists an additive measu re fon  the subsets of S such that for all x, y in s 

d ( x , y ) = f ( X -  Y ) + f ( Y - X ) =  ~ f(V),  (1) 
V ~ X A Y  

where X - Y  denotes the set of features that belong to X but not to Y, and 
X A Y = ( X -  Y ) ~ ( Y - X ) .  

More specifically, consider the feature matrix M = (mq), 1 <_ i <_ k, 1 <_ j <_ n, where n 
is the number of objects in s and k is the number of feature's i~S.  Tt~  mij entry of M 
equals 1 if feature i belongs to object j, and 0 otherwise. For  any pair of objects x, y in s, 
and any feature i in S, define 

{10 i fM,x~M~y  
e,x.r) = if Mix = Miy" (2) 

The distinctive features model can now be expressed by 

k 

d(x, y) = ~ eitx,r)fi" (3) 
i = 1  

where f~ is the measure of the i-th feature (Sattath & Tversky, 1985). In matrix form, 
d = El'. In the example of Figure 3, f is a 15-component vector corresponding to 6 shared 
features (3 shape and 3 expression) and 9 unique features (one for each face). 

It is not difficult to see that any set of distances generated by the distinctive features 
model can be represented as an extended tree. To demonstrate this proposition, construct 
a degenerate tree (i.e., a fan) having only one internal node. Set the length of the branch 
that corresponds to x equal to the measure, f (X), of the set of features associated with x. 
The features that are unique to an object are represented by an unmarked segment. Any 
feature shared by two or more objects is represented by marked segments on the corre- 
sponding branches. It is easy to verify that in this representation the extended tree dis- 
tance between x and y is the measure of their symmetric difference because any feature 
shared by x and y is marked and hence does not enter into the distance between them. 

The EXTREE algorithm presented below first constructs an additive tree and then 
searches for additional clusters. It is not proposed as a general procedure for estimating 
the distinctive features model. Rather it is designed for an "imperfect" hierarchical struc- 
ture that consists of a basic tree with a few nonnested clusters. In the next three sections 
we describe the algorithm, apply it to several data sets, and discuss the relation of the 
present development to other proximity models. 

Fitting the Model 

A program, EXTREE, has been written in the PASCAL language to fit the extended 
tree model. The model is fit in three stages. The first consists of fitting the best additive 
tree to the data. In the second stage the program estimates the weights of the marked 
features and selects a subset to be included in the model. The third stage consists of the 
simultaneous estimation of all parameters and the elimination of inconsequential features. 
Readers who are primarily interested in the applications of the model rather than in the 
algorithm may wish to skim or skip this section. 

Fitting an Additive Tree 

The first stage, fitting the best additive tree, is based on Sattath and Tversky's (1977) 
algorithm, as modified by Corter (1982). The input is a symmetric matrix of dissimilarities 
between all pairs of objects. A constant is added to all entries so that (a) all distances are 
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positive, (b) the triangle inequality is satisfied for all triples of objects, and (c) d(x, y) + d(y, 
z) = d(x, z) for at least one triple x, y, z. 

A dissimilarity matrix has an additive tree representation if every four objects can be 
labeled x, y, u, v, such that d(x, y) + d(u, v) < d(x, u) + d(y, v) = d(x, v) + d(y, u) (Buneman, 
1971). This condition is called the tree inequality or the four-point condition. If the data 
satisfy the tree inequality, the corresponding tree can be readily constructed. For  fallible 
data, however, we need a procedure for identifying the tree structure that most closely 
approximates the data. We use a procedure based on neighbor scores (Sattath & Tversky, 
1977), which provides an effective method for fitting additive trees to fallible data (Pru- 
zansky, Tversky & Carroll, 1982). 

For  every quadruple of objects x, y, u, v we order the three sums: d(x, y) + d(u, v), d(x, 
u) + d(y, v), d(x, v) + d(y, u). The object pairs corresponding to the smallest sum receive a 
score of 2, the object pairs corresponding to the intermediate sum receive a score of 1, and 
the object pairs corresponding to the largest sum receive a score of 0. The overall neigh- 
bor score for x and y is the sum of their scores across all quadruples including x and y. 
Using the matrix of neighbor scores, x and y are taken to be nearest neighbors and 
combined into a new cluster if the pair x, y has a larger neighbor score than any other 
pair. Cases of nonreciprocity (i.e., y is x's nearest neighbor, but x is v's nearest neighbor), 
and cases where y and v are tied as x's nearest neighbor are resolved by comparing d(x, 
y) + d(v, Z) and d(x, v) + d(y, Z), where d(v, Z) is the average distance of v to all objects 
other than x, y, and v. We select y as x's nearest neighbor if the first sum is smaller than 
the second, and v otherwise. 

Once the nearest-neighbor pairs are found, all such pairs are combined into clusters 
corresponding to branches of the tree. The distance between an object z and a new cluster 
comprised of x and y is defined as the average of d(x, z) and d(y, z). If x and y are 
themselves clusters the distances are weighted by the number of objects in each cluster. It 
can be shown that in an additive tree the length of the arcs joining the new node to its 
children, x and y, is a function of the distance between x and y and the distances from x 
and y to all other objects in the tree. 

The process described above reduces the size of the matrix of distances by the 
number of clusters formed at that stage. From this new distance matrix we derive another 
matrix of neighbor scores, and new clusters are constructed. The procedure is repeated 
until only two or three clusters remain, at which point the topology of the (unrooted) tree 
is determined. 

Because the rooting of the tree affects its interpretation, several options have been 
provided for the selection of the root. The default places the root  on the arc joining the 
last two clusters. Another option selects the rooting that minimizes the variance of the 
distances from the leaves to the root. Finally, the user may choose the rooting by speci- 
fying the arc on which the root should be placed. 

Selection of  Marked Features 
Note that the inequality part of the tree inequality is always satisfied for some label- 

ing of a quadruple. However, the equality of the two larger sums may not hold, in which 
case the data cannot be perfectly represented by an additive tree. Consider four objects x, 
y, u, v for which 

d(x, y) + d(u, v) < d(x, u) + d(y, v) < d(x, v) + d(y, u). (4) 

In Figure 5a this pattern of distances is represented by an unrooted extended tree with a 
marked segment, A, shared by x and u. 

Introducing the marked segment A amounts to adding a parameter (0). As shown in 
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FIGURE 5 
(a) An extended tree of four objects in unrooted form. (b) Alternative representation of the same structure. 

V 

Figure 5a, the distances among the four objects can be expressed by 

a(x,  y) = ~ + O + #, 

d(u, v) = y + 0 + ~J, 

d(x, u) = ~ + 2 + y, (5) 

d(y, v) = fl + 2 + 6, 

d(x, v) = ct + 0 + 2 + ~, 

d(y, u) = fl + 2 + 0 + ~. 

Note that the marked segment A represents a feature common to x and u, so 0 does not 
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enter into the distance between x and u. Substituting these expressions in (4) yields 

(~ + o +/~) + (~ + o + a)< (~ + ~ + ~) + (/~ + ~ + a) 

<(~  + 0 +  2 + 6 ) + ( f l +  2 + 0 +  7), 

o r  

0 < 2 < 0 + 2 .  

Note that if 0 = 0 the two largest sums in (4) are equal so the tree inequality holds. 
It is easy to show that there exists a positive solution to (5), provided the triangle 

inequality is satisfied. For  example, 

½ [d(x, y) + d(x, u) - d(y, u)] 

= ½E(2. + / / +  ~' + 2 + 0) - (/~ + ~ + 2 + 0)], 

~---0C. 

A similar argument applies to fl, 7 and 6. 
The values of 0 and 2 are positive by (4), because 

½ [d(x, v) + d(y, u) - d(x, u) - d(y, v)] 

= ½[(e + fl + y + 6 + 22 + 2 0 ) -  (e + fl + y + fi + 22)3 

= O, 

½ [d(x, v) + d(y, u) - d(x, y) - d(u, v)] 

= ½[(~ + fl + 7 + 6 + 22 + 2 0 ) -  (~ + fl + y + 6 + 20)] 

Although, as shown above, the solution to (5) is unique, the graphical representation 
in Figure 5a is not. Figure 5b presents an alternative representation in which marked 
segment A corresponds to a feature common to y and v, rather than to x and u. The two 
graphs are equivalent in the sense that they both represent the distances in (5). The non- 
uniqueness arises because the set of objects sharing the marked feature in the first graph 
(x, u) is the complement of the set of objects sharing the marked feature in the second 
graph (y, v). However, in either graph 0 enters only into the distances between the two 
sets. This indeterminacy of the feature structure is a general characteristic of the distinc- 
tive features model, as shown by Sattath and Tversky (1985). 

However, just as for an additive tree, the choice of a root  for an extended tree re- 
stricts the placement of marked segments. For example, in Figure 6, the marked segment 
C has a common-feature interpretation, but a marked segment on the arcs labeled C? 
would not because the sets of objects "below" the two arcs in the rooted tree are not 
disjoint. 

The placement of a marked feature may not be determined by the choice of a root  for 
the additive tree, in which case the program represents the marked feature as common to 
the two branches that are closer in the data. In the example of Figure 5, d(x, u) < d(y, v). 
Hence the marked segment A is represented as a feature common to x and u, as in Figure 
5a. Use of this heuristic is largely a matter of convenience; the placement can also be 
specified by the user, and it does not affect the representation of the distances. 

The program estimates the lengths of all possible marked segments in the tree. The 
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An extended tree of more than four objects. 

estimate of the lengths of a segment shared by branches X and U is given by 

1 
.,---~ ~ [d(x, v) + d(y, u)) - (d(x, u) + d(y, v))], 

Q 

where Q is the set of all quadruples of objects (x, y, u, v) in the tree with structure ((x, y)(u, 
v)), where x ~ X, u e U, and N is the number of such quadruples. This is the least-squares 
estimate that would result if that feature alone were used to predict the residual distances 
from the tree. 

Once the lengths of all marked features are estimated, we seek a relatively small 
subset of them that accounts for a large proportion of the residual variance in the dis- 
tances, given the tree structure. Initially, the k features with largest estimates are selected, 
where k is a number specified by the user, or set by default to half the number of objects. 
However, some of these k features may be eliminated or combined. A redundant pattern 
of features arises when there exists a feature common to branch x and to the branch 
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consisting of u and v, as well as a feature common to x and u, and a feature common to x 
and v. In this case the smallest of the three features is eliminated. Also, the marked seg- 
ments estimated so far represent features common to pairs of branches. A more parsi- 
monious representation may often be achieved by constructing higher-order marked fea- 
tures. For  example, if x and u share a feature, as do x and y, and y and u, then it is 
assumed that x, y and u all share a single feature, which can be represented by a single 
marked segment on the three branches. The search for higher order features is equivalent 
to the search for cliques in the general graph defined by the set of selected marked fea- 
tures (where the nodes correspond to branches in the extended tree, and the arcs are 
defined by the selected marked features). A similar rule was used by Shepard and Arabic 
(1979) to search for a parsimonious set of clusters. 

Fitting of the Full Model 

After the selection of marked features, the least-squares estimates of the parameters  
(i.e., arc lengths) are obtained by multiple regression. A matrix P is defined in which each 
row corresponds to a parameter  of the model, and each column to one of the interobject 
distances. The Pi~ entry of this matrix is 1 if the i-th feature is included in the j - th distance, 
and 0 otherwise. We then solve the matrix equation 

E 'P f  = P'd, 

where f is the vector of unknown parameters, d is the vector of observed distances, and E 
is the distance-feature matrix defined in (2). 

The initial estimates of the parameters  are revised by eliminating all negative esti- 
mates as well as positive estimates that do not exceed a preset threshold. The default 
value of the threshold is 2.5% of the largest observed distance. The solution is then reesti- 
mated without the eliminated parameters. These steps are repeated, if necessary, until no 
parameter  estimates are less than the threshold. 

Simulation Study 

To test the effectiveness of the EXTREE algorithm, we conducted a small-scale simu- 
lation study. Because the program is designed for structures that are pr imar i ly- -but  not 
fully--hierarchical, we generated extended trees by selecting additive trees and adding to 
them a few nonnested (i.e., overlapping) clusters. The additive trees were generated as 
follows. First, an integer was assigned to each of n objects (n = 10, 20). An integer 
1 < i < n was selected at random and objects i and i + 1 were grouped together. The 
process was repeated until all objects were clustered. A set of k overlapping clusters 
(k = 2, 5) was then selected at random. Each of these clusters included 2, 3 or 4 branches 
with probabili ty 1/2, 1/3, and 1/6, respectively. Once the nested and overlapping clusters 
were identified, the weight of each cluster was drawn from a uniform distribution on the 
unit interval, and the distances between objects were generated according to the distinc- 
tive features model, (3). 

For  each of the four combinations of the number  of objects (n) and the number  of 
nonnested clusters (k), 25 data sets were generated and analyzed by EXTREE. 

The correlations between the solutions and the data were perfect (average r 2 = 1.00) 
when k = 2 for both n = 10 and n = 20. When k = 5 the average r 2 reduces to .98 for 
n = 10, and to .99 for n = 20. These results suggest that the program is reasonably ef- 
fective although there is room for improvement.  

In a second condition, random normal error (with variance equal to 1/4 of the vari- 
ance of the generated distances) was added. The average r 2 for the fallible data when 
k = 2 was .93 for n = 10 and .88 for n = 20. When k = 5 the average r 2 was .91 for n = 10 
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and .87 for n = 20. The decline in fit due to the present level of noise is roughly com- 
parable in magnitude to that observed in a simulation study of ADDTREE and KYST 
(Pruzansky et al., 1982). 

Applications 

In this section we describe the application of EXTREE to several sets of data report- 
ed in the literature. The results of the analyses are summarized in Table 2. This table 
presents for each data set the number of parameters used in the ADDTREE and the 
EXTREE solutions (both marked and unmarked). It also reports the percentage of vari- 
ance (PV) explained by each solution, and the F statistic used to test the (null) hypothesis 
that all the marked segments should equal zero. Because the standard stochastic assump- 
tions that underlie the conventional F test (random sampling, independent error terms) 
are questionable in the present setting we adopt a nonstochastic interpretation of signifi- 
cance testing developed by Freedman and Lane. 

Freedman and Lane (1983a, 1983b) showed that the traditional significance level 
associated, say, with an F test can be interpreted as the proportion of data sets obtained 
from the original one by permuting residuals for which the F statistic exceeds the ob- 
served value. In this interpretation the level of significance is a descriptive statistic; a 
small p value merely indicates an extreme data set. This approach is similar to the logic of 
randomization tests but it permutes observed residuals rather than unobservable (sto- 
chastic) disturbance terms. 

The application of the Freedman-Lane approach to the present setting involves the 
following steps. First, the observed dissimilarity vector d is predicted (by d) using only the 
unmarked segments, derived from ADDTREE. Second, a vector of residuals r = d - d is 
computed. Third, new data sets of the form d + r* are constructed, where r* is a permu- 
tation of r, (i.e., a rearrangement of the components of the residual vector r). If the marked 
segments added by EXTREE to the regression equation do not improve the prediction of 
d, the observed value of the F statistic should be comparable to the F values of the data 
sets generated by permuting the residuals. On the other hand, if only a very small fraction 
of the generated data sets give rise to higher F ratios, the contribution of the marked 
segments is probably not accidental. Table 2 shows that in all but one case (languages) the 
extended tree appears to fit the data significantly better than the additive tree. These 
applications are described in turn. 

Identification of Digits 
Keren and Baggen (1981) investigated the confusability of rectangular digits of the 

kind used in digital watches and calculators. The digits were presented on a tachistoscope 
for a very brief interval. Exposure time was adjusted to result in about 30% confusions 
for each subject. The frequency of confusing i with j plus the frequency of confusing j with 
i, pooled over the 8 subjects, was taken as a measure of proximity. The resulting distance 
matrix obtained by multiplying all entries by - 1  and adding a positive constant was 
analyzed by EXTREE. The initial additive tree accounted for 76% of the variance, and 
this value was raised to 93% with the addition of only four marked segments. The ob- 
tained solution is presented in Figure 7. 

The basic (unmarked) tree structure includes four binary clusters: (0, 8), (6, 5), (9, 3), 
(1, 7). Note that the two elements in each pair differ only in one line segment. Other digits 
that differ by one segment only, however, cannot be represented by the same additive tree. 
Some of these clusters emerge in the EXTREE solution. In particular, the marked seg- 
ments E and C form the clusters (5, 9) and (6, 8), respectively. The remaining marked 
segments connect digits that differ in two segments ((i, 4) and (6, 0)). 
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DDDDDDDD 

2 
HHHHHHHHHHHHHHHHH 

3 
~EEEEEE EEEEEEEEEEEEEEEEE 

II IISSSSLooooooo s 
D=o=ooooco=o= B 

1 
9 
4 

5 

0 

c : ~ B  

E :~ I~ 

H: ]71- -  ~ 

Flt~J~ 7 
EXTREE solution for confusions between digits (Keren & Baggen, 1981). PV = 93%. 

Similarity of Integers 
Shepard, Kilpatric and Cunningham (1975) obtained ratings of similarity between all 

pairs of integers from 0 to 9, considered as abstract concepts. Shepard and Arabic (1979) 
presented an additive clustering (ADCLUS) solution of these ratings, pooled across sub- 
jects and several symbolic representations of the integers. Applying EXTREE to the same 
data accounted for 90% of the variance as compared with 62% of the variance accounted 
for by ADDTREE. The graphical solution, including five marked segments, is presented 
in Figure 8. 

The basic (unmarked) tree consists of four distinct clusters: the additive and multipli- 
cative identities (0, 1), powers of two (2, 4, 8), multiples of three (3, 9, 6), and the remaining 
primes (5, 7). The first four marked segments generate a different type of cluster based on 
proximity along the number line. Specifically, the marked features C, E, H and D capture, 
respectively, the following sets of consecutive integers: (0, I, 2, 3), (0, 1, 2, 3, 4), (4, 5), and 
(7, 8, 9). Finally, K describes multiples of two, (2, 4, 6, 8), which could not be represented 
in the basic tree because 6 was clustered with the multiples of 3. With the inclusion of this 
feature, both the multiples and the powers of two and of three can be represented in the 
same structure. 

These data also demonstrate how EXTREE forms higher level marked segments (C, 
D, E, and K) by combining pair-wise common features. 
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CCCCCCCCCCEEEEEEEEEE, 

ONE 

ZERO 

KKKKKKKKKKKKK 

CCCCCCCCCC" 

I EEEEEEEEEE 
HHHHHHHHHHH~ 

IDDODDDDDDDDDDDDD 

.................. TWO 

FOUR 

E I G H T  

CCCCCCCCCCEEEEEEE EE THREE 

DDDDDDDDDDDDDDDD NINE 

KKKKKKKKKKKKK S I X 

FIVE 

SEVEN 

c : z e r o ,  one,  two,  th ree  

o : seven, eight,  nine 

E : zero,  one,  two,  t h r e e ,  four 

H : four ,  f ive 

K:  tWO, four,  s ix ,  e i g h t  

F1GURE 8 
EXTREE solution for similarity of integers (Shepard et al., 1975). PV = 90%. 

Proximity of Languages 
Most contemporary European languages are thought to have developed from a 

common Indo-European proto-language by successive differentiation. A rooted tree offers 
a natural representation of this historical development. Due to cultural exchanges o r  

geographical proximity, however, some languages have been influenced by others that are 
not necessarily genealogically related. Common forms of such influence include borrowing 
of terms, parallel constructions and phonological shifts. Because of the Norman invasion 
of England in the eleventh century, for example, many words in English derive from the 
Romance languages rather than from the Germanic languages to which English belongs. 
Similarly, Rumanian is generally classified as a Romance language on the basis of its 
morphology and history, but only a small part of its lexicon has Romance origins and the 
majority of its words have been borrowed from its geographical neighbors, especially the 
Slavic languages. Numerous examples of this kind have led some linguists to propose that 
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1 
I I 

oooooooo - -  SPANISH 

EEEEF'EE PORTUGUESE 

-RUMANIAN 

c c c e c e c c c c c c c  CATALAN 

EEEEeEE . . . . . . . .  I T A L I A N  

......... IODOOODO0 FRENCH 

lecccceceeecec PROVENCAL 

c: p r o v e n c a l ,  c a t a l a n  

O: span ish ,  f rench 

E: portuguese, italian 

FIGURE 9 
EXTREE solution for percentage of cognates between Romance languages (Tischler, 1973). PV = 94%. 

language innovations spread out to geographically contiguous groups in a wavelike 
manner (see, e.g., Bynon, 1980). 

The extended tree model provides a convenient way to represent such relations 
among languages, by augmenting the basic historical tree with marked segments that 
could represent the borrowing of terms and other cross-influences. To illustrate this appli- 
cation we present, in Figure 9, an extended tree solution for a proximity matrix compiled 
by Tischler (1973, p. 136), whose entries are the estimated percentage of cognates for pairs 
of Romance languages. 

The basic (unmarked) tree consists of two major clusters (French, Provencal) and 
(Spanish, Portugese), which are joined, respectively, by Italian and Rumanian. Catalan, 
which is closest to Latin from which all these languages originated, appears as a separate 
branch near the root of the tree. The application of EXTREE to these data led to the 
addition of three marked features: D shared by Spanish and French, C shared by Catalan 
and Provencal, and E shared by Italian and Portugese. The addition of the marked seg- 
ments increased the proportion of explained variance from 88% to 94% although the 
increase is not significant. Because the data base in this case is rather limited, the solution 
should be interpreted with care. The present example was introduced merely to illustrate 
the possibility of extending the traditional language tree to represent sources of influence 
that cut across the basic genealogical structure. 

Proximity Between Instances of Furniture 

The next two analyses are based on unpublished data collected by Mervis, Rips, 
Rosch, Shoben & Smith (1975), who asked subjects to rate the degree of relatedness be- 
tween instances of natural categories (Rosch & Mervis, 1975). Figure 10 presents the 
EXTREE solution for judgments of proximity between instances of furniture. The 
ADDTREE solution accounted for 83% of the variance and the EXTREE solution, with 
eight marked segments, accounted for 90% of the variance. 
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r EEEEEEEEEE[ 

1 I 

TABLE 

DESK 

BOOKCASE 

DRESSER 

CLOSET 

O0000UUUUUU 

CCCCCCCCCCCC 

BED 

IEEEEEEEEEEE CHAIR 

uuuuuu] SOFA Iooooo l 
/cccccccccccc CUSHION 

FOOTSTOOL 

RUG 

I HHHHHHHHHHH M I R ROR 

t Izzzzzzzz ............ PI CTU RE 

zzzzzzzz VASE 

LAMP 

STOVE 

DDDDDDDDDODDD PIANO 

OODOOOOOODDODNNNNNNNNNNNNN - -  R A D I O  

I t . . . . .  CLOCK 

LNNNNNNNNNNNN . . . .  TE L E P H O N E  

c : cushion, rug 

O : piano, radio 

E : tab le ,  d e s k , c h a i r  

H : dresser,  closet, mi r ror  

N : rad io,  te lephone 

o : bed, so fa ,  cushion 

u : bed, chair, sofa,  cushion 

z : p ic tu re ,  vase 
FIGURE 10 

EXTREE solution for proximity between instances of furniture (Mervis et al., 1975). PV = 90%. 
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Both the unmarked and the marked segments seem readily interpretable. In general, 
the marked features tended to reflect natural associations more than taxonomic consider- 
ations. For example, the primary tree groups Table with Desk, and Chair with Sofa and 
Cushion. The secondary classification (induced by the marked segments) combined Table 
and Desk with Chair (E) and Cushion with Rug (C). Similarly, the primary classification 
combines Mirror with Picture, which have a similar shape and are both made of glass, 
whereas the secondary classification combines Picture with Vase (C), which are not per- 
ceptually similar but are both used for decoration. 

Similarity of  Sports 

Mervis et al. (1975) also obtained ratings of relatedness between twenty sports. The 
EXTREE solution for these data is presented in Figure 11. The ADDTREE solution 
accounted for 82% of the variance as compared to 93% for EXTREE. The (unmarked) 
tree yielded two major clusters: spectator ball games (e.g., football, basketball), and out- 
door and water sports (e.g., hiking, canoeing, skiing). In addition the data yielded a few 
binary clusters, such as tennis and ping pong, billiards and checkers, and boxing and 
fencing. 

The marked features generated by the EXTREE solution nicely complement the 
basic classification by clustering related activities that cannot be expressed in the basic 
tree. For example, volleyball, tennis and ping pong (X) all involving passing a ball over a 
net. Another higher order feature (K) groups all the water sports: canoeing, surfing, skin- 
diving and swimming. The other marked segments reflect natural associates: boxing is 
joined both with jump rope (H), which boxers use in training, and with football (E), which 
is also a contact sport. 

Discussion 

The extended tree has been developed in order to represent graphically both nested 
and overlapping clusters that emerge from the analysis of proximity data. The novel 
aspect of the proposed representation is the use of marked segments to describe nonnes- 
ted features or overlapping clusters while preserving the graphical form of a tree where 
any two nodes are joined by a unique path. Although the simple additive tree and the 
extended tree are based on the distinctive features model, both common and distinctive 
features appear in the representation. This is a consequence of the fact that a given seg- 
ment represents features that are distinctive in some comparisons and common in others. 

It is instructive to compare the extended tree to other feature models of proximity 
data. Both the hierarchical clustering model and the additive tree assume a nested feature 
structure, or a nonoverlapping family of clusters. This restriction does not apply to the 
extended tree or to the additive clustering model of Shepard and Arabie (1979; see also 
Arabie & Carroll, 1980). In this model the distance between objects is inversely related to 
the measure of their common features, or equivalently to the sum of the weights of the 
clusters to which both objects belong. 

Formally, a dissimilarity function d satisfies the common features model if there 
exists an additive measure g defined on the subsets of the feature set S and a constant K, 
such that for all x, y in s 

d(x, y) = K -- g(X n Y) = K -- ~ g(V). (6) 
V ~ X c ~ Y  

In terms of the object-feature matrix M = (mi~), the common features model is ex- 
pressed by 

d(x, y) = K - ~ gi mix re,y, (7) 
i=1  

where g~ is the measure of feature i, or equivalently the weight of cluster i. 
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c : pingpong t bi l l iordst checkers 

o : fencing~ a rchery  

E : footbol l~ boxing 

H : boxing~ jump rope 

K : swimming~ skindiving, sur f ing ,  canoeing 

N : camping~ archery 

o : ski ing, sur f ing 

u : conoeing~hik ing~camping,  horsebock~ archery 

x : vo l leyba l l ,  f enn i s j  pingpong 
FIGURE 11 

EXTREE solution for proximity between sports (Mervis et al., 1975). PV = 93%. 
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The additive clustering model and the hierarchical clustering model are naturally 
expressed in terms of common features, whereas both the additive and the extended tree 
are expressed in terms of distinctive features. Table 3 summarizes the relations among the 
four models in terms of two facets: the feature structure (nested vs. nonnested) and the 
nature of the distance rule (common features vs. distinctive features). However, the hier- 
archical clustering model can be expressed in terms of either common or distinctive fea- 
tures. This follows from the fact that in all ultrametric tree all objects have the same 
measure (i.e., distance from the root), hence the measure of the common and of the dis- 
tinctive features are linearly related (i.e., f ( X  - Y)  + f ( Y  - X )  = K --  2g (X  n Y)). Note 
that all four models in Table 3 are special cases of the contrast model (Tversky, 1977). 

We next discuss the relation between the distinctives features model (or equivalently, 
the extended tree), and the common features model (or equivalently, additive clustering). 
On the face of it, the models are quite different. In particular, the distinctive features 
model is a metric: it satisfies minimality (d(x, x ) =  0 for all x in s) and the triangle in- 
equality (d(x, y) + d(y, z) > d(x, z)). In contrast, the common features model generally does 
not obey minimality, and it need not satisfy the triangle inequality. Furthermore, given a 
particular object-feature matrix, the two models give rise to different dissimilarity order- 
ings (Sattath & Tversky, 1985). To illustrate, consider a set of faces with a common frame 
F (including eyes, nose, and mouth) and three additive features: beard (X), glasses (Y), and 
mustache, (Z). In the common features model 

d ( F X  Y, F X Z )  = K - g(F) - g(X)  < K - g(F) = d (FZ ,  F), 

but in the distinctive features model 

d ( F X  Y, F X Z )  = f ( Y )  + f ( Z )  > f ( Z )  = d (FZ ,  F). 

However, Sattath & Tversky (1985) showed that (excluding self-dissimilarities) the 
two models can be mapped into each other. That is, if there exists an additive measure f 
satisfying the distinctive features model, (1), relative to some feature matrix M, then there 
exists an additive measure g satisfying (up to an additive constant) the common feature 
model relative to a different feature matrix M' and vice versa. The two measures f and g 
have the same numbers of free parameters, but they are not linearly related nor do they 
have the same support. (The support of a measure is the set of elements for which it is 
nonzero). Thus, data that have a common-features solution also have a distinctive- 
features solution, but the solutions are generally different because they need not include 
the same clusters. 

From the perspective of scaling, then, EXTREE differs from the various ADCLUS 
programs in three respects. First, it is based on a different notion of distance that gives 
rise to different features or clusters. Second, it is based on a different algorithm for con- 
structing clusters. Third, it yields a tree-like graphical representation of the proposed 
solution. The choice between an EXTREE representation and one obtained by an 
ADCLUS procedure, then, depends on the interpretability of the induced clusters, as well 
as on the usefulness of the display. The solutions cannot be compared in terms of good- 
ness of fit, however, because the two representations necessarily account equally well for 
the observed dissimilarities. 

The empirical examples discussed in the previous sections suggest contexts in which 
EXTREE could be usefully applied. EXTREE seems appropriate for the representation of 
nominal factorial structures, where neither a regular tree nor multidimensional scaling is 
very satisfactory. For example, the extended tree of Figure 3, with only three marked 
segments, provides an excellent amount  of a 3 × 3 factorial design that requires a four- 
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TABLE 3 

Classification of Additive Feature Models 

Distance 
Rule 

Common 
Features 

Distinctive 
Features 

Feature Structure 

Nested Non-nested 

Hierarchical Clustering 
(Sokal & Sheath, 1963) 

Additive Tree 
(Sattath & Tversky, 1977) 

Additive Clustering 
(Shepard & Arabie, 1979 

Extended Tree 
(Corter & Tversky, 1986 

dimensional solution. EXTREE is also well suited for describing perturbations of an in- 
herently hierarchical structure. The Romance languages example (Figure 9), where the 
dominant taxonomic structure is perturbed by geograpical influences, is a case in point. 
Many classification systems are primarily but not perfectly hierarchical. The books in a 
college library, for example, are organized primarily in a hierarchical fashion according to 
disciplines and subdisciplines (e.g., social science, psychology, psychometrics) with some 
overlapping categories such as quantitative methods that include both psychometrics and 
econometrics. 

The clusters fit by EXTREE are divided into the primary clusters, described by the 
unmarked segments, that constitutes the basic tree and the secondary clusters, described 
by the marked segments. In some applications the primary and the secondary clusters are 
conceptually distinct. For example, the primary clusters in Figure 8 refer to structural 
properties of the integers, and the secondary clusters describe the position of the integers 
along the number line. In other applications (e.g., the confusability of digits or the prox- 
imity of sports) there is no clear separation between the primary and the secondary clus- 
ters. Indeed, the user may sometimes wish to interchange some primary and secondary 
clusters in order to obtain a simpler or more interpretable configuration. In Figure t 1, for 
example, canoeing is part of the branch of camping sports, and it is connected to the other 
water sports by a marked segment (K). However, we can interchange the primary and 
secondary clusters so that canoeing will be clustered with the other water sports and 
includes a marked segment shared with the other camping sports. The two graphs provide 
about the same fit to the data, hence one is free to choose the more readable or interpret- 
able representation. The EXTREE program, therefore, should not be treated as a rigid 
canonical representation but rather as an interactive device for representing proximity 
data in a convenient graphical form. 
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