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In two empirical studies of attention allocation during category learning, we investigate the idea that
category learners learn to allocate attention optimally across stimulus dimensions. We argue that
“optimal” patterns of attention allocation are model or process specific, that human learners do not
always optimize attention, and that one reason they fail to do so is that under certain conditions the
cost of information retrieval or use may affect the attentional strategy adopted by learners. We empiri-
cally investigate these issues using a computer interface incorporating an “information-board” display
that collects detailed information on participants’ patterns of attention allocation and information
search during learning trials. Experiment 1 investigated the effects on attention allocation of distribut-
ing perfectly diagnostic features across stimulus dimensions versus within one dimension. The overall
pattern of viewing times supported the optimal attention allocation hypothesis, but a more detailed
analysis produced evidence of instance- or category-specific attention allocation, a phenomenon not
predicted by prominent computational models of category learning. Experiment 2 investigated the
strategies adopted by category learners encountering redundant perfectly predictive cues. Here, the
majority of participants learned to distribute attention optimally in a cost–benefit sense, allocating
attention primarily to only one of the two perfectly predictive dimensions. These results suggest
that learners may take situational costs and benefits into account, and they present challenges for
computational models of learning that allocate attention by weighting stimulus dimensions.

Attention has been studied in many subfields of
psychology, including perception, categorization,
decision making, and social and abnormal psychol-
ogy. The mechanisms underlying these many
attentional phenomena are probably distinct,
comprising what Posner and Petersen (1990)
suggested might be a hierarchy of systems. A

gross distinction has been made between those
selective-attention processes that are stimulus
driven or “bottom-up” and those processes that
are “top-down” in the sense of being affected
by the observer’s goals, and usually under con-
scious control (e.g., Driver & Frackowiak, 2001;
Egeth & Yantis, 1997; Hopfinger, Woldorff,
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Fletcher, & Mangun, 2001; Maddox, Ashby, &
Waldron, 2002). The present paper is concerned
with attention phenomena that occur in classifi-
cation learning, focusing on phenomena that may
be assumed to be largely top-down and volitional.

The role of attention has been a long-standing
concern in research on category learning. In a
classic study, Shepard, Hovland, and Jenkins
(1961) showed that some concepts or categories
are easier to learn than others, and that the ease
of learning depends on the category structure.
For example, categories defined by the values of
only one stimulus dimension (e.g., shape) are
easier to learn than classes defined by values of
two or more dimensions (e.g., shape and colour).
Shepard et al.’s results have been interpreted
(e.g., Nosofsky, 1984; Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier, 1994a) as showing that
category learners can selectively allocate attention
to stimulus features on a dimension-by-dimension
basis, and that they can learn to allocate attention
in an optimal or near-optimal manner across
stimulus dimensions. Related empirical work by
Posner (1964) and Garner (1978; Gottwald &
Garner, 1975) explored how well experimental
participants could perform tasks (including classi-
fication) requiring various types of selective atten-
tion to stimulus dimensions. Gottwald and Garner
(1975) found that for separable dimensions, “fil-
tering” tasks requiring selective attention to a
single dimension were easier than “condensation”
tasks requiring attention to two or more dimen-
sions (see also Ashby & Gott, 1988; Kruschke,
1993). More recently, Kersten, Goldstone, and
Schaffert (1998) and Maddox et al. (2002) have
provided indirect evidence for the operation of
multiple attention processes in categorization
tasks.

These and other empirical results suggest that
attention allocation is a crucial component
process in human category learning. This
assumption has been incorporated into many
prominent mathematical and computational
models of classification learning, particularly
those based on exemplar representations of cat-
egories. For example, Medin and Schaffer’s
(1978) context model of category learning and

Nosofsky’s (1984, 1986) subsequent generaliz-
ation of this model (the generalized context
model or GCM) incorporated selective-attention
parameters that enable better fit of the models to
a variety of laboratory findings. Medin and
Schaffer suggested that these dimensional
weighting parameters could reflect implicit or
explicit hypothesis testing by individuals.
Nosofsky (1984) specifically proposed that cat-
egory learners come to allocate attention across
dimensions in an optimal manner, an idea that
we refer to as the optimal attention allocation
hypothesis.

Recent adaptive network models of categoriz-
ation, such as ALCOVE (Kruschke, 1992),
RASHNL (Kruschke & Johansen, 1999), and
SUSTAIN (Love & Medin, 1998; Love, Medin,
& Gureckis, 2004), have incorporated parameters
intended to model dimension-specific selective-
attention processes. Selective attention to specific
stimulus dimensions is a crucial assumption of
these “single-process” models that gives them the
capability to account for the learning of both
simple rule-based categories and more complex
structures.

An alternative viewpoint is proposed by various
“dual-process” models of categorization (e.g.,
Ashby, Alfonso-Reese, Turken, & Waldron,
1998; Erickson & Kruschke, 1998; Smith,
Patalano & Jonides, 1998). For example, the
COVIS model of Ashby et al. (1998) assumes
that rule-based learning is mediated by a conscious
hypothesis-testing process, while learning of more
complex structures occurs through an implicit
procedural-learning system. Evidence suggests
that distinct neural pathways are involved in these
two systems. Ashby and Casale (2003) even
propose that more than one implicit category-
learning system might exist. Similarly, Smith
et al. (1998) contrast rule-based categorization
processes with similarity-based categorization
(based on similarity to stored exemplars), present-
ing evidence that these learning “strategies” are
qualitatively distinct processes involving different
neural pathways. However, either strategy can be
applied to a given categorization task, and a lear-
ner’s choice of strategy can even be affected by
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task instructions. Smith et al. (1998) specifically
address the idea of using empirically established
dimensional attention weights to identify the
type of categorization process that is operational
in a task, arguing that a “pure” exemplar learning
strategy would not necessarily involve differential
weighting of stimulus dimensions. In contrast,
rule-based approaches imply all-or-none weight-
ing of relevant and nonrelevant stimulus
dimensions.

These contrasting theoretical accounts raise
several important issues. A fundamental issue is
whether both rule-based and similarity-based
learning can (and should) be simulated by a
single model incorporating dimensional attention
weight parameters, or whether a multiple-
systems approach might be more appropriate
(e.g., Ashby et al., 1998; Ericsson & Kruschke,
1998; Shanks & St. John, 1994; Smith et al.,
1998; Waldron & Ashby, 2001; Zaki &
Nosofsky, 2001).

Within the single-systems approach, another
critical issue is whether attention is really distribu-
ted by learners to dimensions, as implied by the
dimensional weighting mechanisms of models
such as the GCM (Nosofsky, 1986), ALCOVE
(Kruschke, 1992), and SUSTAIN (Love &
Medin, 1998). Studies of category learning that
have used shifts in the task structure (e.g.,
Kruschke, 1996b) seem to provide strong support
for the idea of differential adaptive weighting of
stimulus dimensions in learning. However, it
might be that attention can be allocated at the
level of individual feature values, or to specific
stimuli, or to specific categories or subcategories
of instances. If any of these last possibilities are
true, that would suggest that the dimension-based
attention mechanisms posited in these single-
system models of categorization might not be a
complete description of the attention processes of
human learners.

Resolving these issues, in particular the validity
of the optimal attention allocation hypothesis and
of the dimensional weighting assumption incor-
porated into prominent single-system models of
category learning, would be greatly aided by
detailed process data on attention allocation

during category learning. The present paper is
meant to provide relevant data towards this end.
Until recently there has been only indirect evidence
supporting the need for selective-attention mech-
anisms in models of category learning, based on fit
indices measuring how well the models predict the
patterns of classification accuracy shown by human
subjects (e.g. Kruschke, 1992; Kruschke &
Johansen, 1999; Love & Medin, 1998; Nosofsky
et al., 1994a). But clearly the best way to test and
validate these computational models of attention
learning is through empirical data directly measur-
ing attention allocation by human subjects during
category learning. Recently several researchers
have described studies using eyetracking equip-
ment to gather such direct data on attention
allocation (Kruschke, Kappenman, & Hetrick,
2005; Rehder & Hoffman, 2005a, 2005b). These
studies are summarized below.

Direct empirical data on attention allocation
in category learning

Eyetracking studies
Rehder and Hoffman (2005a) conducted a replica-
tion of the classic experiment by Shepard et al.
(1961) using eyetracking equipment to record
how classification learners direct attention to
different parts of a computer screen. The stimuli
were sets of pictorial icons, presented in a fixed
spatial pattern so that different stimulus dimen-
sions corresponded to different fixed areas of the
screen. Their results showed that most learners
tended to fixate all stimulus dimensions early in
training, later restricting their eye fixations to
only the relevant dimensions (thus providing
support for the optimal attention allocation
hypothesis). The latter shift tended to follow
closely the elimination of classification errors.

Rehder and Hoffman (2005b) used eyetracking
equipment to conduct another category-learning
experiment using the well-known “5/4” stimulus
structure of Medin and Schaffer (1978). The
stimuli instantiating this structure were schematic
drawings of imaginary insects. Rehder and
Hoffman concluded that the pattern of attention
allocation shown by a majority of participants
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was not the normatively optimal pattern suggested
by application of exemplar and prototype models
(here, the GCM and a “multiplicative prototype
model”, the MPM) to the category structure.
This finding can be taken as evidence against the
optimal attention allocation hypothesis.

Another recent study examining the role of
attention processes in learning was conducted by
Kruschke et al. (2005), who used eyetracking
methods in a word association task to test
attention-based explanations for the associative
learning phenomena of blocking and highlighting.
The patterns of observed attention and the degree
of blocking or highlighting across individual par-
ticipants supported their attention-based account
of these phenomena.

The results of these initial studies show that
empirical data on how category learners allocate
attention can be valuable in providing new tests
of category-learning models. But previous results
are inconsistent with regard to the optimal atten-
tion allocation hypothesis, because attention was
allocated more or less optimally for the simple
rule-based categories of Shepard, Hovland, and
Jenkins (Rehder & Hoffman, 2005a) but in an
apparently nonoptimal manner for the 5/4 stimu-
lus structure (Rehder & Hoffman, 2005b).

Thus, it seems important to explore the con-
ditions under which category learners may opti-
mize their attention allocation and to investigate
whether there are individual differences in this
regard among human learners. Furthermore, it
would be valuable to replicate the most critical
findings from the abovementioned eyetracking
studies with alternative methodologies, to
provide converging evidence for the most import-
ant conclusions. In the present paper we show that
using an information-board interface to gather
detailed data on the process of information acqui-
sition by learners supports and extends results from
these initial eyetracking studies.

Studying attention processes via an information-
board interface
Researchers in the field of judgement and decision
making have long been interested in studying how
people weight information from different stimulus

dimensions in decision tasks. “Process tracing”
studies in that field have used a variety of
methods, including eyetracking and information-
board displays (e.g., Ford, Schmitt, Schechtman,
Hults, & Doherty, 1989; Wedell & Senter,
1997). For example, Payne, Bettman, and
Johnson (1988) reported a study of the processes
observed in choice among multidimensional
alternatives using a computer interface that they
dubbed “Mouselab”. This interface presents infor-
mation on several choice alternatives to partici-
pants. Each alternative is presented as a single
row of a rectangular table, while columns of the
table correspond to stimulus “dimensions”.
Participants can uncover the information in
specific cells of the table by clicking on a cell with
a computer mouse. In this way the total viewing
time spent on various dimensions and the order
of examining information can be used to establish
patterns of attention allocation and to infer the
choice strategies used by decision makers.

Matsuka (2002; Corter & Matsuka, 2004)
adapted this information-board method for
category-learning applications. In the Methods
section we describe this new interface in more detail.

Categorization strategy and patterns of information
search
Rehder and Hoffman (2005a) interpreted their
results on attention distribution as suggesting
that category learners in early blocks of tasks invol-
ving the learning of simple rules were actually
engaged in a mix of activities: exemplar-based
and rule-based learning strategies. They based
this conclusion on data showing that learners
attended to many dimensions initially (suggesting
exemplar-based processing), but seemed to learn
simple one-dimensional rules in just a few trials.

In the information-board paradigm, additional
information can be used to distinguish these two
strategies, especially in the multiple-instances
presentation condition. Specifically, use of an
exemplar-based strategy should be associated
with a search pattern in which learners move
across a single row of the display, investigating
the features of a single instance. Thus, when cell-
to-cell transitions are analysed, an exemplar-based
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strategy should show a high proportion of within-
row transitions. In contrast, the most efficient way
to search for and validate simple classification rules
in the multiple-instances condition is to first
uncover the diagnoses of all four instances on
the screen, then to move up and down a single
column of the display (corresponding to a single
stimulus dimension) looking for an association
between specific feature values and categories.
Thus, data on between-cell transitions might be
an additional source of data indicating specific cat-
egorization strategies (cf. Ford et al., 1989; Payne,
1976; Wedell & Senter, 1997).

Testing the optimal attention allocation
hypothesis

As described above, recent eyetracking studies
(Rehder & Hoffman, 2005a, 2005b) have yielded
inconsistent findings regarding whether attention
allocation in category learning is optimal. We
believe that several issues need to be clarified in
order to understand and reconcile these inconsist-
ent results.

Optimality of attention is model specific
First, we emphasize that the notion of “optimal”
attention allocation depends on the model or
process that is assumed to govern learning. In
general, the specific dimension weights that maxi-
mize classification accuracy for a category structure
differ depending on the model being tested
(Matsuka, Corter, & Markman, 2007; Minda &
Smith, 2002; Rehder & Hoffman, 2005b; Zaki,
Nosofsky, Stanton, & Cohen, 2002).

For example, a simple rule-based categorization
strategy implies that observed attention data
would correspond to all-or-none weighting of rel-
evant and nonrelevant stimulus dimensions. Note
that for structures that are describable by multi-
dimensional rules, it has been argued (Kruschke
& Johansen, 1999; Zaki et al., 2002) that it is
the configural validity of sets of dimensions that
ought to determine optimal attention allocation,
rather than the diagnosticity of individual
dimensions.

When the classification structure to be learned
is not describable by necessary-and-sufficient fea-
tures, then the optimal attention weights are
clearly dependent on the type of categorization
process or model that is assumed. For such
complex structures, the optimal attention hypoth-
esis has been investigated mainly in the context
of specific exemplar models or prototype
models (Minda & Smith, 2002; Nosofsky, 1986;
Rehder & Hoffman, 2005b; Zaki et al., 2002),
rather than in terms of rule learning. But rule
learning is adopted by many participants as a heur-
istic approximate strategy for complex structures
(Matsuka et al., 2007). In this case we might ask:
What is the error rate of the simple rule, or what
is the minimum complexity of a complex rule (or
a rule-plus-exception representation) that is suffi-
cient to accomplish the classification task (cf.
Feldman, 2003; Love & Medin, 1998)?

Individual differences in categorization strategies/
models
If the optimal weights for a given category struc-
ture depend on the specific categorization model
assumed, then an attention allocation pattern can
only be established to be optimal for individual
learners known to be using a specific strategy.
Thus, data on attention allocation during category
learning may shed light on the optimal attention
allocation hypothesis only if the empirical results
can also be used to establish the type of category-
learning strategy or process that is being used by
individual participants.

Constraints on capacity and cost–benefit
considerations
Human beings have bounds on their information-
processing capacity (e.g., Gigerenzer & Goldstein,
1996; Simon, 1955). Thus, people are not always
able to find the optimal solution to a problem. In
category learning people may optimize attention
weights when the optimal solution is easy to
find, but have trouble doing so for more complex
structures. As an example, consider how difficult
it is for human learners to learn a true XOR task
(e.g., Medin, Altom, Edelson, & Freko, 1982).
Under a rule-based model, and also with certain
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exemplar and prototype models (Matsuka et al.,
2007), optimal weights in this task can be
defined as substantial and equal weights on the
two dimensions defining the XOR concept, with
zero weights elsewhere. Yet many learners fail to
find these optimal weights. Faced with such com-
plexity, people often adopt simple heuristics (rules)
that achieve reasonable results.

The use of approximate rules by category
learners is illuminating. Because an exemplar
model should always be sufficient for perfect classi-
fication performance in any deterministic task,
why not always use an exemplar-based strategy?
Yet people do use simple rule-based strategies
even when they are not perfectly predictive and
seem to prefer simple rules to more complex
rules (e.g., Feldman, 2003; Hunt, Marin, &
Stone, 1966; Nosofsky et al., 1994a; Shepard
et al., 1961).

These observations suggest that cost or com-
plexity considerations may affect people’s choices
of categorization strategy, and that therefore it
may be useful to adopt a cost–benefit or effort–
accuracy approach to analysing the category-
learning strategies adopted by human learners.
Such approaches have been widely accepted in
other areas of human performance, such as
decision making (e.g., Gigerenzer & Goldstein,
1996; Newell, Weston, & Shanks, 2003; Payne
et al., 1988; Simon, 1955). We take the strong
position that such a cost–benefit approach is
necessary to fully understand human categoriz-
ation, especially any analysis of the optimality of
attention allocation patterns. Such a cost–benefit
approach may also help to explain why (and
when) different subsystems of category-learning
models are brought into play, in the context of a
multiple-systems account of category learning.

EXPERIMENT 1

Experiment 1 was designed to investigate how
attention is allocated during the course of category
learning. To accomplish this, we used an “infor-
mation-board” software interface specifically

designed (Matsuka, 2002) to gather detailed data
on category learners’ patterns of information
search during learning. The resulting data
provide a test of the optimal attention allocation
hypothesis in the case of simple rule-based cat-
egories. Additionally, we conducted detailed ana-
lyses of the patterns of information search in this
task, in order to (a) extend previous results on
simple dimension viewing times with detailed ana-
lyses of the patterns of information search, and (b)
explore individual differences in classification
strategies. These detailed analyses of the patterns
of information search during category learning
were used to investigate an important theoretical
issue: the fundamental assumption of many
single-process models of category learning that
attention is allocated on a “dimensional” basis.
Our data on information search patterns do not
fully support the dimensional attention assump-
tion. Although summed viewing times (the
primary measure of attention) indeed varied
across dimensions in the expected pattern, our
detailed process data indicate that people some-
times adopt patterns of attention or information
search that are feature specific or category specific.

Experiment 1 also compared the processes and
efficacy of category learning under the conditions
of single- versus multiple-instance presentation of
exemplars during training. In most laboratory
studies of category learning, instances are pre-
sented one at a time in training trials. However, a
few laboratory studies of category learning (e.g.,
Medin et al., 1982; Murphy & Smith, 1982) have
used simultaneous presentation of multiple
instances of categories, apparently in an attempt
to facilitate learning. The significance of this
difference in training procedure has not been expli-
citly discussed in these previous studies, apparently
being treated as trivial or irrelevant. However, this
variation in experimental procedure seems of
theoretical interest. Recent research on similarity
relations (e.g., Markman, 1996; Markman &
Gentner, 1996) has stressed the importance of
stimulus comparison processes, suggesting that
there may indeed be differences in learning pro-
cesses and outcomes when instances are viewed in
isolation or several at a time. When only a single
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object is presented, people are constrained in their
information search strategies and must rely on
memory to compare stimuli. This training pro-
cedure might encourage exemplar-based learning
strategies. When multiple objects (possibly from
different categories) are available simultaneously,
people can directly compare the features of the
objects both within and between categories. We
hypothesize that this should facilitate learning, in
particular the learning of rules (perhaps with
exceptions). In fact, the presentation of multiple
category instances in training has been used in
some previous studies of classification learning
with the apparent goal of speeding learning. To
investigate this issue, we varied (between subjects)
the number of exemplars presented simultaneously
on the computer screen, presenting either one or
four instances at once.

The information-board interface

We designed and implemented a computer-based
interface (Matsuka, 2002) to collect empirical data
shedding light on how attention is allocated
during classification learning. As described
below, the interface collects data on feature
viewing times, which are then summed for each
dimension to derive a total viewing time for each
dimension for each trial or block. These total
viewing times for each dimension are interpreted
as the primary measure of attention to that
dimension.

Participants in Experiment 1 performed a
simulated medical diagnosis task, in which they
learned to diagnose patient descriptions (exem-
plars) in term of four possible diagnoses (the cat-
egories). Patients were described in terms of
specific symptoms, which corresponded to discrete
values on the stimulus dimensions (e.g., “scratchy
throat” vs. “red throat”). Our interface presented
descriptions of specific exemplars on the computer
screen in the form of a two-way table, with each
exemplar corresponding to a row of the infor-
mation display, and each feature dimension cor-
responding to a column.

The software recorded the amount of time a
participant viewed each feature of a presented

exemplar. This was accomplished by presenting
the information table initially as a blank grid. By
clicking on a particular cell of the display partici-
pants could view the information in that
square—namely, the value of the corresponding
exemplar (patient) on that dimension. We used
these feature viewing times as an operational
measure of attention allocated to the correspond-
ing dimension for each presented stimulus and
the total viewing time for that dimension
(summed across all presented exemplars in a
block) as an overall measure of attention allocated
to the dimension in the block.

The category-learning task in our experiments
was based on a category structure investigated by
Lassaline (1990), described in Lassaline,
Wisniewski, and Medin (1993). That study of
hierarchical classification learning provided
strong evidence for the importance of selective
attention in classification behaviour. In Lassaline’s
experiment, two factors were varied between
subjects. The first factor may be termed feature
distribution. There were two levels of this factor:
For one level, information from only a single
dimension was necessary and sufficient for
perfect categorization (i.e., the one-dimensional or
1D structure). In this condition we would expect
to see attention directed towards this single diag-
nostic dimension. For the other level, information
from all four dimensions was necessary (the four-
dimensional or 4D structure). In this condition
we would not expect to see asymmetries in atten-
tion among the four dimensions. The second
factor varied by Lassaline was the hierarchical
level of the defined categories: general or specific.
We report here only our replication of the specific
level structure.

Method

Participants
The participants were 63 students from the
Columbia University community. They partici-
pated for a payment of $10. Participants were ran-
domly assigned to one of the four conditions
described below.
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Materials
The stimulus sets used in this experiment were fic-
titious medical patients, each described by an ID
number and a value on each of four types of symp-
toms or feature “dimensions”: throat, eye,
stomach, and muscle complaint. Each symptom
dimension could take on one of four possible
values (features). These four specific features or
“symptoms” were: scratchy, coated, sore, and hoarse
for throat; bloodshot, itchy, watering, and dry for
eye; nauseated, growling, bloated, and acidic
for stomach; and achey, stiff, weak, and cramping
for muscles.

As in Lassaline’s (1990) study, the stimuli con-
sisted of 12 exemplars, each one described by its
values on all four dimensions. The classification
task performed by participants corresponds to
Lassaline’s specific level structure, in which par-
ticipants had to learn to classify each of the 12
stimuli into one of four specific level categories.
Each category had a simple rule defined by
one necessary and sufficient feature value.
Two factors were varied between subjects. The
first factor is feature distribution. In the one-
dimensional (1D) conditions, the diagnostic
(necessary and sufficient) feature is distributed as
four values on a single symptom dimension,
while in the four-dimensional (4D) conditions,
these four diagnostic values are distributed across
all four dimensions (Table 1). For each participant,
both the dimension names and the specific
symptom labels were assigned randomly to this
structure. The second factor, presentation mode,
is described below under Procedure.

Procedure
A computer program implementing an infor-
mation-board interface was developed using the
MATLAB system (Mathworks, 1999) to adminis-
ter this experiment. During training, the user
interface presented a table of stimuli and their fea-
tures on the computer screen, so that each row rep-
resented one patient, and each column represented
one symptom “dimension” (see Figure 1 for an
example). As illustrated in Figure 1, in one con-
dition the exemplars (medical patients) were pre-
sented to participants four at a time, while in

another condition they were presented one at a
time. Thus, the second between-subjects factor
of the present experiment was presentation
mode, with two levels (single instance or multiple
instances).

The task required of participants was to learn to
correctly diagnose the fictitious patients based on
each patient’s values on the four symptom dimen-
sions. Each screen (referred to as a “session”) con-
tained descriptions of either one or four patients,
depending on the experimental condition.
Initially, the information in each cell describing
the feature value of that dimension for that
patient is hidden. To uncover information, a par-
ticipant clicks a mouse button on a (covered) cell,
which reveals the symptom. When a participant
requests information on another symptom or
makes a classification response, then the infor-
mation on the previous symptom disappears auto-
matically. The participant makes a classification
response whenever he or she is ready. Once a par-
ticipant classifies a patient, she or he receives feed-
back that consists of the diagnosis that she or he
has made, the correct diagnosis, and the feature
values for that patient on all four dimensions
(which all become simultaneously visible for 2
seconds). After the participant enters a diagnosis,
and feedback is given, the correct diagnosis for

Table 1. Schematic representation of the stimulus set in Experiment 1

One-dimensional

condition

Four-dimensional

condition

Category D1 D2 D3 D4 D1 D2 D3 D4

A 1a 1 3 4 1a 2 4 3

A 1a 2 4 1 1a 3 2 4

A 1a 3 1 2 1a 4 3 2

B 2a 4 2 1 2 1a 3 4

B 2a 1 3 2 3 1a 4 2

B 2a 2 4 3 4 1a 2 3

C 3a 3 1 3 4 3 1a 2

C 3a 4 2 4 2 4 1a 3

C 3a 1 3 1 3 2 1a 4

D 4a 2 4 2 3 4 2 1a

D 4a 3 2 3 4 2 3 1a

D 4a 4 1 4 2 3 4 1a

Note: a Diagnostic feature.
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each patient remains on the screen. After viewing
the feedback, the participant can continue to
uncover symptoms for that or any other patient
on the screen. Thus, learners can search for and
view information either before or after they make
a diagnosis. We report these prefeedback and post-
feedback viewing times separately in some
analyses.

All participants were asked to categorize a total
of 96 fictitious patients: eight repetitions or blocks
of the complete set of stimuli. For each screen,
participants’ patterns of information search were
recorded, allowing investigation of changes in
their classification accuracy and patterns of atten-
tion allocation across of trials. For the single
instance presentation condition, each screen or
“session” consisted of only a single trial.
However, for data analysis purposes we grouped
the results of every four trials in this condition to

facilitate comparison with the multiple instances
condition.

Results

Classification accuracy
The learning curves for classification accuracy
across blocks of 12 training instances are shown
in Figure 2, separately by condition. A repeated
measures analysis of variance (ANOVA) on
mean classification accuracy was conducted with
between-subjects factors feature distribution (1D
or 4D) and presentation mode (multiple instances
or single instances) and the within-subjects
factor block. As is apparent from Figure 2, the
one-dimensional (1D) structure was easier to
learn than the four-dimensional (4D) one, F(1,
59) ¼ 7.03, p ¼ .01, h2 ¼ .11. Also, the main
effect of presentation mode on mean classification

Figure 1. A sample computer screen viewed by participants in the one-dimensional, multiple-instances condition (Experiment 1).
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accuracies was significant, F(1, 59) ¼ 9.34, p ,

.01, h2 ¼ .14, such that presentation of multiple
instances resulted in higher accuracy than present-
ing only a single patient at a time. The effect of
training block was significant, F(7, 413) ¼ 41.77,
p , .001 (with adjustment based on Huynh–
Feldt epsilon ¼ .62), h2 ¼ .41. No interactions
among the three factors were significant, with
h2 ¼ .02 for the three-way interaction, and
h2 ¼ .01, .03, and .01 for the interactions of
Block � Presentation Mode, Block � Feature
Distribution, and Presentation Mode � Feature
Distribution, respectively.

Attention
Figure 3 shows attention allocation, as indicated
by relative feature viewing times, over the entire
course of learning, separately by condition. These
relative feature viewing times, plotted over time
(blocks) for each of the four dimensions, are nor-
malized for each block of trials so that the sum
of the viewing times across dimensions equals
one. In both the single- and multiple-instance
presentation conditions, participants who learned
the 4D stimulus structures (Panels 3c and 3d) allo-
cated attention approximately equally across
stimulus dimensions, and this pattern did not
change across blocks. In contrast, those who
learned the 1D stimulus structures increasingly

allocated attention to the single informative
dimension (Panels 3a and 3b). This pattern is as
predicted by the optimum attention allocation
hypothesis. For the 1D conditions, the observed
trend was corroborated by a repeated measures
ANOVA on the relative amount of attention
allocated to the diagnostic Dimension 1. The
overall test of learning trend (factor block) was sig-
nificant, F(7, 203)¼ 17.31, p , .001 (with adjust-
ment based on Huynh–Feldt epsilon ¼ .30),
h2 ¼ .37. The between-subjects effect of presen-
tation mode was also significant, F(1, 29) ¼ 4.92,
p ¼ .04, demonstrating that participants who had
access to multiple instances on a single screen
learned to pay attention to the single informative
dimension more quickly than those who were in
the single-instance condition. The interaction of
block and presentation mode was not significant
(h2 ¼ .04).

As described, the attention learning curves in
Figure 3 plot the relative (normalized) amount of
attention paid to each of the four dimensions.
However, it is also informative to examine trends
in total feature viewing time. Doing so can
clarify, for example, whether learners come to
focus on the diagnostic dimension in the 1D con-
dition (as seen in Panels 3a and 3b) by viewing that
dimension more, or by viewing other dimensions
less. Furthermore, it is informative to analyse
feature viewing times separately for the time
period before a participant gives a diagnosis for
an exemplar and receives feedback (“prefeed-
back”), and after (“postfeedback”), because these
different patterns can shed light on how partici-
pants manage their learning. For example, post-
feedback viewing times seem particularly
conducive to learning, because during the post-
feedback period, the correct diagnosis for the
exemplar remains visible on the screen, facilitating
the formation of feature–category associations and
the formation and testing of rules.

Figure 4 shows the pattern of total feature
viewing time across training blocks, separated by
whether the viewing is occurring prefeedback for
a given exemplar or postfeedback. First, it can be
seen that the increasing focus of relative attention
on the diagnostic dimension in this 1D condition

Figure 2. Experiment 1: Observed learning curves (classification

accuracy) across “blocks” of trials, separately by condition. A block

of trials is here defined as one complete presentation of all 12

stimuli. Chance performance is equal to 25%.
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occurs because the amount of attention directed at
the other dimensions drops away, not because the
attention directed at the diagnostic dimension
increases. Interestingly, in this condition partici-
pants show a steep drop in postfeedback feature
viewing after the first block of trials. We believe
that this is because prefeedback viewing involves
primarily a visual search for diagnostic features
(or stimulus identification processes) necessary to
identifying specific exemplars, possibly applying
rules, and generating a tentative diagnosis. In con-
trast, postfeedback viewing by definition cannot be
involved in selecting a classification response;
rather it seems to be in service of learning strat-
egies, whether instance memorization or hypoth-
esis generation and testing. Note that there is a
general decline across blocks in total feature
viewing times, across all dimensions and both

before and after feedback. This empirical finding,
if it is a general one, could explain why some
researchers have found better fits by adaptive
network models to classification learning data
when a gradual decline in the learning rate par-
ameter across blocks is implemented (cf.
Kruschke & Johansen, 1999).

Individual differences in attention and classification
accuracy
Attention allocation learning curves can also be
studied at the level of the individual learner (cf.
Ashby, Maddox, & Lee, 1994; Kruschke et al.,
2005; Maddox, 1999). We examined individual-
level data in the critical 1D multiple-instances
condition. Figure 5 shows plots of the amount of
relative attention paid to the diagnostic
Dimension 1 for the 16 individuals in this

Figure 3. Experiment 1: Observed attention allocation by dimension across blocks of trials. A. One-dimensional (1D) feature structure,

multiple-instances presentation mode. B. One-dimensional (1D) feature structure, single-instance presentation mode. C. Four-

dimensional (4D) feature structure, multiple-instances presentation mode. D. Four-dimensional (4D) feature structure, single-instance

presentation mode.
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condition. Classification accuracy is also plotted.
The plots show that there are indeed substantial
individual differences in how quickly attention is
directed at the diagnostic Dimension 1. For
some participants, Dimension 1 is never singled
out, while other participants do so almost immedi-
ately. A majority of participants show a pattern of
attention allocation consistent with rule-based
learning, in that they quickly come to allocate
attention solely to the diagnostic dimension.
However, at least 1 participant seems to show a
pattern (roughly 25% of relative attention allo-
cated to the diagnostic dimension) consistent
with an exemplar-based learning strategy.

Figure 5 also shows that there is a very tight
correlation between the amount of attention allo-
cated to Dimension 1 and the classification accu-
racy, both within individual learners and across
learners. This finding replicates a similar result
by Rehder and Hoffman (2005a), providing

converging evidence for the widespread assump-
tion in models of classification learning that atten-
tion learning is a critical component in such
learning and validating the use of total feature
viewing times for a dimension (whether collected
from the information board display or from eye-
tracking measurements) as an index of attention
paid to that dimension.

Patterns of information search
Within-row versus within-column cell transitions.
The information-board software also collects
data on each learner’s sequences of cell inspections
in each screen display. These data can be analysed
to study information search patterns, providing
insights into learners’ categorization strategies
(cf. Payne et al., 1988; Wedell & Senter, 1997).
Especially in the multiple-instances presentation
condition, learners have several options open
to them. They might investigate each exemplar
(row) thoroughly, checking several or all its
symptoms before making a categorization
response for that instance, then repeat this
process for other exemplars (a pattern suggestive
of exemplar-based processing), or they might
directly compare several exemplars on a single
dimension, by making transitions up or down a
single column of the display (a dimension-based
processing strategy). Note that a preponderance
of row transitions is strong evidence that a
learner is using an exemplar-based decision
strategy to select a diagnosis, but does not
constitute direct evidence about the learner’s rep-
resentation of the category in memory.
Analogously, a high frequency of column tran-
sitions is evidence for a rule-based categorization
strategy, but such a strategy might be used even
if the representation of the category in memory
is exemplar based.

To measure the prevalence of these two infor-
mation search strategies, we identified and
counted within-row and within-column cell tran-
sitions by participants. Any other type of cell tran-
sition—that is, a diagonal “move” in the display
grid—was classified as an arbitrary transition.
The relative prevalence of these three search pat-
terns can shed light on the importance and

Figure 4. Experiment 1: Total feature viewing times over blocks,
by dimension, in the one-dimensional, multiple-instances

presentation condition. A. Prefeedback viewing times. B.

Postfeedback viewing times.
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nature of exemplar comparison (versus rule-based)
processes in category learning and highlight
changes in use of these strategies across the
course of learning (cf. Payne, 1976; Payne et al.,
1988; Wedell & Senter, 1997).

In the multiple-instance presentation mode, a
simple statistic that is diagnostic of categorization
strategy is the proportion of cell transitions
within a column (characteristic of a dimension-
or rule-based strategy) versus cell transitions
within a row (corresponding to an exemplar-
based strategy) versus arbitrary (i.e., diagonal)
cell transitions. Figure 6 shows a plot of the rela-
tive proportion of instance-based (row) moves
versus dimension-based (column) moves versus
arbitrary (diagonal) moves, separately for the
1D and 4D stimulus structures. In the first
block of the 1D multiple-instances condition
(Panel 6a) learners make primarily row tran-
sitions. This presumably occurs because at this

stage they are trying to learn about exemplars,
or to learn other information about the structure
of the stimulus space. However, starting with
Block 2 learners begin to make cell transitions
primarily within columns (dimension-based pro-
cessing). This can be taken as evidence that
they are beginning to test and adopt hypotheses
involving simple rules. This apparent shift in pro-
cessing strategies in early trials was also found by
Rehder and Hoffman (2005a) for the simple
Type I concepts of Shepard et al. (1961). They
found that attention (as measured by viewing
times) was distributed relatively evenly in early
trials (consistent with exemplar-based proces-
sing), then became more focused on the single
dimension relevant to the category rule. Our
data validate and extend their results based on
feature viewing times by establishing a cor-
responding shift in the pattern of cell transitions
by category learners.

Figure 5. Experiment 1: Individual differences in classification accuracy and attention learning curves for the 1D multiple-instances

condition. Solid line ¼ classification accuracy. Dashed line ¼ relative attention to the diagnostic dimension (Dimension 1).
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Evidence for self-terminating search strategies. In
contrast, in the multiple-instances 4D condition,
where the diagnostic features are spread across
four dimensions instead of being distributed
within one dimension, participants continue to
make mostly row (within-exemplar) transitions
throughout the course of training (Panel 6b). For
the four-dimensional structure, this persistent
pattern of row transitions is consistent with the
observed even spread of relative attention across
the four dimensions (Figure 4), as predicted by
single-system adaptive network models that
presume dimension-based attention allocation
(and apparently consistent with the optimal atten-
tion hypothesis). In multiple-systems accounts this

pattern of attention would suggest the activation
of an exemplar-based learning process.

However, this pattern of even attention allo-
cation (and persistent row-based transitions) is
also consistent with another possible categoriz-
ation process. Because the specific rules for the
four categories involve specific feature-to-category
associations, it may be that attention is allocated by
learners at the level of the specific feature, not at the
dimensional level, and that learners distribute
their attention evenly across dimensions because
they are searching across dimensions for these
diagnostic feature values.

These two possibilities cannot be distinguished
on the sole basis of relative viewing times for the
four dimensions. However, our detailed data on
sequences of cell transitions can be analysed to dis-
tinguish these accounts. The first possibility, use of
an exemplar-based strategy associated with equal
allocation of attention across the four dimensions,
implies that a learner should persist in viewing all
four cells (columns) for a given exemplar across all
blocks of training. The second possibility, that cat-
egory learners are learning specific feature-
category rules, might be used by a category
learner in conjunction with a self-terminating
search strategy, especially if costs are associated
with acquiring information. If this strategy is fol-
lowed, then, as soon as a learner finds a known
diagnostic feature, the category response is given,
and the search for diagnostic features terminates.

Therefore, we analysed the sequence of (prediag-
nosis) cell inspections in the final block, when the
categories are well learned, in order to seek evidence
for self-terminating searches for diagnostic features.
First, we checked the proportion of trials on which
the diagnostic feature was the final dimension
checked before a diagnosis was given. Figure 7a
shows for each individual learner the final-block
proportion of exemplars for which the diagnostic
feature was the last cell checked, versus the final-
block accuracy for that learner. If learners are
conducting exhaustive searches (consistent with
exemplar-based processing or dimensional attention
allocation), then this proportion should remain con-
stant at 25% across blocks, including in this final
block. If on the other hand they are learning specific

Figure 6. Experiment 1: Relative proportions of dimensional,

instance-based, and arbitrary cell transitions in the multiple-

instances presentation conditions. A. One-dimensional structure.

B. Four-dimensional structure.
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feature-category rules, then they may exhibit
searches that terminate upon finding one of these
diagnostic features, and this proportion should
increase across blocks.

In Figure 7a, the circles indicate learners in the
multiple-instances condition. Of the learners exhi-
biting good classification learning performance
(final block accuracy over 50%, where 25% is
chance performance), 8 out of 12 have a relative
frequency of .5 or above of checking the diagnostic
features last, indicating at least some proportion of
self-terminating searches. For the single-instances
condition, the number of accurate classifiers who
tend to terminate after the diagnostic feature (by
this .5 criterion) is only 2 out of 10. This pattern

confirms that a high proportion of learners in the
multiple-instances condition are adopting a self-
terminating search for diagnostic features consist-
ent with a rule-based classification strategy. This
pattern is not consistent with a simple exemplar-
based categorization strategy, nor with any
model that assumes dimension-based allocation
of attention (though it may be that such models
could be extended to account for this phenom-
enon). Furthermore, the results confirm our
hypothesis that the multiple-instance condition
tends to facilitate the learning or use of rule-
based (versus exemplar-based) strategies, com-
pared with the single-instances condition.

Another analysis of the 4D condition data that
supports these conclusions involves looking at the
average number of dimensions viewed for each
exemplar. If specific feature-category rules are
being learned, then on average only 2.5 dimen-
sions will need to be viewed in later blocks in
order to find a diagnostic feature value. On the
other hand, if search is exhaustive (as with an
exemplar-based strategy), the number of dimen-
sions viewed should remain constant (at four)
across blocks, including the final block. Figure 7b
presents these data. A total of 8 out of the 12 suc-
cessful learners (accuracy over 50% in the final
block) in the multiple-instances condition view
an average of approximately 2.5 or fewer dimen-
sions in the final block, indicating self-terminating
searches for the diagnostic feature. Only 4 out of
the 12 accurate learners check more than 3.5
dimensions on average, a pattern consistent with
an exemplar-based strategy or with evenly distrib-
uted dimensional attention weights.

To summarize, although the feature viewing
times in the 4D conditions of Experiment 1 are
spread evenly across the four dimensions, consist-
ent with both the optimal attention allocation
hypothesis and the dimensional weighting view
of attention allocation, the cell transitions data
support quite different conclusions. This analysis
of information search patterns of individual lear-
ners supports the conclusion that attention is not
simply distributed on a dimensional basis, as
assumed in prominent adaptive network theories
of classification learning such as ALCOVE.

Figure 7. Experiment 1: Evidence for self-terminating searches for

diagnostic feature values for each individual participant, separately

by condition (4D vs. 1D). A. The proportion of instances in the final

block for which the diagnostic feature was the last one viewed before

a diagnosis was made, versus final block accuracy. B. The mean

number of dimensions viewed in the final block for each instance,

versus final block accuracy.
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Evidence for feature- or category-specific attention
allocation: Viewing times. If patterns of information
search differ by category in the manner shown by
the above analyses, then perhaps a reanalysis of
the viewing times for features and dimensions
could provide corroboration of the idea of
feature- or category-specific patterns of attention
allocation. Figure 8 shows the changes in relative
viewing time to the diagnostic feature for instances
of each separate category A–D (in Panels A–D,
respectively) across blocks of training. In each
panel, separate lines are shown for the multiple-
instances and single-instance conditions. In these
graphs, stable and equal relative attention allo-
cation to the four dimensions for a single category

would correspond to a flat line across blocks at the
level 25%. For the multiple-instances condition, it
is instead clear that for each specific category,
across blocks increasing amounts of attention are
paid to the dimension containing the relevant
diagnostic feature value. This pattern is further
evidence of a search for diagnostic information
that terminates when a highly diagnostic cue is
encountered. The lines for the single-instance
condition also show some suggestion of increasing
amounts of attention being paid to the diagnostic
dimension, although this trend is much less strong
than that in the multiple-instances condition, a
pattern indicative of slower learning in the 1D
condition.

Figure 8. Experiment 1: Evidence for category-specific (or feature-specific) attention strategies: changes in relative attention to the diagnostic

feature value for instances of each category A–D (in Panels A–D, respectively) across blocks of training. In each panel, separate lines are shown

for the 4D and 1D conditions.
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Discussion

The summed feature viewing times for dimensions
in Experiment 1 provide evidence seeming to
support the idea that category learners learn to
allocate attention optimally across dimensions.
The feature viewing times in the one-dimensional
(1D) condition indicated that a majority of classi-
fication learners quickly learned to allocate atten-
tion primarily to the single diagnostic dimension,
while the learners in the four-dimensional (4D)
condition spread attention approximately evenly
across the dimensions. This pattern of results is
consistent with the pattern predicted by the
optimum attention allocation hypothesis for the
case of simple categories described by necessary-
and-sufficient features. Together with the accuracy
data, these results suggest that the 1D structure of
Lassaline (1990; Lassaline et al., 1993) is easier to
learn than the 4D structure specifically because
participants quickly learn to eliminate attention
to noninformative dimensions, as assumed by pro-
minent adaptive network theories of classification
learning.

However, detailed analysis of the information
search patterns of category learners, particularly
the patterns in the 4D condition (Figures 7 and
8) suggests another interpretation of the observed
patterns of attention allocation. Specifically, a
majority of the high-accuracy learners in the 4D
condition showed a pattern of information search
that terminated when they uncovered a diagnostic
feature for one of the target categories. This evi-
dence for self-terminating search for diagnostic
features can be understood by considering what
might be the most efficient information search
strategy for a participant (in later trials) seeking
to categorize a single exemplar in the 4D categor-
ization task. In this task, there is no reason to
prioritize any particular dimension higher than
any other: Each dimension has a single diagnostic
feature predicting one of the four categories. Thus,
the first dimension checked by a learner might be
selected randomly or arbitrarily. But as the features
of the single exemplar are uncovered, one might be
recognized as diagnostic of a particular category,
say Category B. At that point, there is no reason

to uncover further features of that exemplar—it
can be classified as a B, and the information
search can stop. Such a self-terminating infor-
mation search can cause both effects illustrated in
Figure 7 and 8: Searches tend to end on the diag-
nostic feature for a dimension, as shown in
Figure 7, and such diagnostic features are viewed
longer (Figure 8), learning to category-specific
attention patterns.

These results suggest that at a finer level of
analysis, attention in category learning is not dis-
tributed on a dimension-by-dimension basis as
implied by the dimensional weighting schemes of
prominent single-systems theories of category
learning. Rather, learners’ patterns of information
search in this experiment suggest that they are
actively searching for diagnostic information, con-
sistent with a rule-based categorization strategy in
which specific features (specific values of dimen-
sions) become associated with the category
responses. Such a pattern of terminating search
as soon as highly diagnostic information has
been uncovered has been documented in studies
of decision making, where it has recently been
termed a “fast and frugal” strategy (e.g.,
Gigerenzer & Goldstein, 1996; Newell et al.,
2003).

A higher proportion of learners showed this
feature rule-based information search pattern in
the multiple-instances condition than in the
single-instance condition. This may be related to
the fact that the multiple-instances condition
leads to faster learning (at least for the present
rule-based categories), making it easier for learners
to detect differences in the diagnosticities for both
dimensions as a whole and for specific values of a
stimulus dimension. We speculate that in the
multiple-instances condition the ease of direct
stimulus comparisons (a form of dimension-
based processing indicated by frequent within-
column cell transitions) aids in the discovery and
verification of simple classification rules. In con-
trast, in the single-instance condition instance-
based processing (indicated by within-row cell
transitions) is the only type of processing possible,
except for potential memory-based stimulus com-
parisons. Thus, it is possible that exemplar-based
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learning may be implicitly encouraged when
instances are presented one at a time (the tra-
ditional paradigm in laboratory studies of classifi-
cation learning), and rule learning may be
facilitated in the multiple-instances condition.

These results suggest that theoretical accounts
of category learning, whether single-process or
dual-process models, may need to reexamine the
assumption that attention allocation can be fully
modelled by dimensional attention weights (cf.
Kersten et al., 1998). People’s information search
strategies seem to deviate from this model in
that they seem to adopt more efficient (or cost-
effective) strategies as learning proceeds, at least
for the present categorization task. Thus, we
argue that a general definition of optimal attention
allocation in category learning may require taking
the cost of information acquisition into account.
Additionally, the results of Experiment 1 also
suggest that it may be important for models of cat-
egory learning to address specific aspects of exper-
imental procedure, in particular the single- versus
multiple-instances manipulation studied here.

EXPERIMENT 2

The pattern of total feature viewing times for
dimensions obtained in Experiment 1 supports
the optimal attention allocation hypothesis, but
this evidence is narrow in the sense that it was
obtained for a simple category structure in which
each class has a single necessary and sufficient
feature. Experiment 2 seeks to test whether atten-
tion optimization also occurs in the presence of
more complicated feature–category relationships,
specifically when there are multiple, correlated
diagnostic cues. Such cue correlation occurs in
many real-world categories (Medin et al., 1982),
and in fact clusters of correlated features are one
of the identifying marks of basic categories
(Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976). Experiment 2 examines an extreme case
of the situation of correlated predictors, in which
the two diagnostic dimensions are perfectly cor-
related, hence redundant.

According to many computational models of
association learning, when dimensions of stimuli
are both highly correlated and predictive of the
classification task, cue competition among those
redundant dimensions is expected. For example,
the associative learning phenomenon known as
blocking (Kamin, 1969; Kruschke et al., 2005)
occurs when two highly correlated and highly
predictive cues (A and B) are experienced
together in the presence of the unconditioned
stimulus (US) after some number of previous
trials in which one stimulus (A) alone was
paired with the US. Under these conditions, an
association is learned between Cue A and the
US, but not between Cue B and the US. Thus,
the A ! US association is said to block learning
of the B ! US association. The significance of
this phenomenon for the present work is that
some associative learning models can make pre-
dictions at variance with the optimum attention
allocation hypothesis in the case of correlated fea-
tures, at least if there are temporal asymmetries in
when the predictive features are encountered.
Specifically, two correlated cues that are equally
predictive may wind up with differential associ-
ation weights to the category, if one is encoun-
tered earlier in learning.

Correlation among diagnostic features also pre-
sents complications in articulating and testing the
optimum attention allocation hypothesis. In the
categorization literature, it has sometimes been
assumed that the amount of attention allocated
to each dimension by a category learner should
be proportional to its simple diagnosticity
(defined as its simple correlation with the cri-
terion). But in the presence of cue correlation,
and in other cases such as the learning of XOR
tasks, the optimal level of attention will not
necessarily be proportional to a dimension’s
simple diagnosticity. Certain researchers have
argued that the amount of attention given to a
dimension instead ought to reflect its “configural
validity” when used in conjunction with other pre-
dictors (Kruschke & Johansen, 1999; Zaki et al.,
2002).

This sort of normative argument about optimal
decision weights seems persuasive only if some
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specific model is assumed to govern learning—for
example, the GCM (Nosofsky, 1986) or a
decision-bound model (e.g., Ashby & Gott,
1988). As an illustration, consider the most
extreme case of correlated predictors: perfectly cor-
related or redundant dimensions. In this case it can
be seen that the optimal weights as defined by a
simple linear model (e.g., a decision-bound
model) are indeterminate; that is, either
Dimension A or Dimension B, or any linear com-
bination of the two, is equally predictive of the
classification criterion. Prominent rule-based and
exemplar-based models of category learning lead
to different predictions for such redundant diag-
nostic features. In simulations of this structure
that we have conducted (Matsuka, 2002, 2005b)
using adaptive network models of category learn-
ing, such as ALCOVE (Kruschke, 1992),
RASHNL (Kruschke & Johansen, 1999), and
SUSTAIN (Love et al., 2004), these models
predict that equal attention will be paid to both
diagnostic dimensions, as long as other relevant
factors are controlled, such as the temporal
sequence and frequencies of training exemplars
and the base rates of the classes to be learned (cf.
Kruschke, 1996a; Kruschke et al., 2005). Even
when there are slight asymmetries in the order in
which exemplars of the two categories are encoun-
tered, caused for example by random ordering of
training exemplars, the attention learning curves
tend to be parallel for the two redundant
dimensions.

Quite different predictions, however, are gener-
ated by rule-based models of classification learn-
ing, such as RULEX (Nosofsky, Palmeri, &
McKinley, 1994b), and by dual-process models
of categorization that include a rule-learning
module (e.g., Ashby et al., 1998; Smith et al.,
1998). For example, if learners are explicitly
testing and rejecting potential simple classification
rules, then it is likely that only one dimension will
be associated with the criterion (because use of
either dimension alone leads to satisfactory per-
formance), and attention will be distributed asym-
metrically. Thus, the data from Experiment 2
should be highly diagnostic in terms of types of
categorization models.

Experiment 2 also had a second goal. The
evidence (based on cell transitions) found in
Experiment 1 for self-terminating feature search
strategies is important, because it suggests that
dimensional attention weights may not be able to
capture the full range of processes and strategies
underlying information access and use during
category learning. In particular, the prevalence of
self-terminating searches for diagnostic infor-
mation suggests that attention allocation during
category learning is (a) flexible, and (b) may shift
during learning so as to minimize costs as well as
to maximize accuracy (because the termination of
a search after a diagnostic feature is encountered
does not improve accuracy, it merely saves effort).
Thus, a second purpose of Experiment 2 is to
further explore the idea that the processes of
attention allocation may be sensitive to the cost
of information retrieval as well as to accuracy
concerns.

In order to investigate these issues, we designed
the stimulus structure for Experiment 2 to have two
dimensions that are both perfectly predictive
(i.e., singly sufficient for the classification task)
and perfectly correlated. The stimulus structure
we used resembled the one-dimensional (1D)
structure of Experiment 1, but the perfectly
predictive dimension of that structure was
augmented here by a redundant predictive dimen-
sion (replacing one of the irrelevant dimensions).
We trained participants on this structure
in both single-instance and multiple-instances
presentation conditions.

Method

Participants
Participants were 26 students from the Columbia
University community. They participated for a
payment of $10.

Materials
The stimulus structure used in Experiment 2 is
shown in Table 2. As in Experiment 1, the stimu-
lus sets used in this Experiment are fictitious
medical patients described by four symptoms.
The same dimension and symptom names as
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those used in Experiment 1 appeared in
Experiment 2. Symptom dimensions were ran-
domly assigned to dimensions of the stimulus
structure. The symptoms were labelled in
random fashion so that the names of the diagnostic
symptoms differed for each participant.

Procedure
Details of the procedure correspond exactly to
those of Experiment 1, except for the stimulus
structure used in the present two conditions. In
particular, the same information-board interface
was used. Participants learned the feature structure
shown in Table 2 in either a multiple-instances
presentation condition (with four exemplars on
the screen at once), or in a single-instance con-
dition. In both conditions, participants encoun-
tered each of the 12 exemplars (patients)
described schematically in Table 2 exactly eight
times, so that each participant experienced 96
learning trials.

Results

Classification accuracy
Figure 9 shows the overall classification accuracy
learning curves for the two conditions. For this
stimulus structure there was little difference in
learning speed between the multiple-instances
and the single-instance presentation modes.

In both conditions, participants learned more
quickly than in any of the conditions of
Experiment 1. For example, in Experiment 1 in
the 1D multiple-instances condition participants
had attained about 86% correct classification by
Block 6, where in Experiment 2 both presentation
conditions showed just over 90% correct classifi-
cation by Block 6. Thus, the added redundant
diagnostic dimension (coupled with the reduction
of one irrelevant dimension) increased the speed of
learning, perhaps because finding a diagnostic
dimension is much easier.

A repeated measures ANOVA conducted on
mean classification accuracy across all blocks
showed that the effect of learning block was signifi-
cant, meaning that the observed increase in accuracy
across trials was significant, F(7, 24) ¼ 37.08,
p, .001, (with adjustment based on Huynh–
Feldt epsilon ¼ .65),h2 ¼ .61. The effect of presen-
tation mode (i.e., the number of instances accessible
simultaneously) was not significant,F(1, 24)¼ 0.01,
p ¼ .91, h2 , .01, and it did not interact with
learning block, F(7, 24) ¼ 0.78, p ¼ .56 (with
Huynh–Feldt adjustment), h2 ¼ .03.

Attention
On average, participants spend more time viewing
Dimensions 1 and 2, the redundant diagnostic

Figure 9. Experiment 2: Observed learning curves (classification

accuracy) across blocks of trials, by condition (single instance vs.

multiple instances).

Table 2. Schematic representation of the stimulus set in Experiment 2

Category D1 D2 D3 D4

A 1a 1a 3 4

A 1a 1a 4 1

A 1a 1a 1 2

B 2a 2a 2 1

B 2a 2a 3 2

B 2a 2a 4 3

C 3a 3a 1 3

C 3a 3a 2 4

C 3a 3a 3 1

D 4a 4a 4 2

D 4a 4a 2 3

D 4a 4a 1 4

Note: aDiagnostic feature.
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dimensions, and across blocks they learned to
ignore the nondiagnostic dimensions. However,
a majority of participants distributed their atten-
tion unequally between the two diagnostic dimen-
sions. In order to show the (arbitrary) asymmetries
in attention allocated to Dimensions 1 and 2, we
renumbered these two dimensions for each partici-
pant based on the amount of attention allocated to
each. We termed the diagnostic dimension that a
participant viewed longer the “dominant” dimen-
sion (relabelling it as “D1”) and the other dimen-
sion the “nondominant” one (relabelled as “D2”).
Figures 10a and 10b show the relative time spent

viewing the “dominant”, “nondominant”, and
the remaining two nonpredictive Dimensions 3
and 4 for the two conditions (multiple-instances
and single-instance). It can be seen that partici-
pants in both conditions quickly moved to a
minimal sufficient strategy of viewing only one
of these two predictive dimensions. Such a
pattern is predicted by rule-based models such
as RULEX, which are presumed to learn unidi-
mensional rules first when they are sufficient.
More generally, this pattern of minimal-
sufficient attention allocation is consistent with
a cost–benefit view of how attention is allocated
in category learning, consistent with our
predictions.

A repeated measures ANOVA was conducted
on mean attention allocated to the dominant
dimension across all blocks, with block as a
within-subjects factor and presentation mode as
a between-subjects factor. The effect of presen-
tation mode was not significant, F(1, 24) ¼

0.00, p ¼ .98, h2 , .01, meaning that for this
stimulus structure the two presentation modes
did not differ in the amount of attention
allocated to the dominant dimension. The within-
subject effect (i.e., learning block) was
significant, F(7, 24) ¼ 24.45, p, .001 (with adjust-
ment based on Huynh–Feldt epsilon ¼ .41),
h2 ¼ .51, meaning that the observed increase
in attention to the dominant dimension across
blocks was significant. The interaction of these
two factors was not significant, F(7, 24) ¼

0.27, p ¼ .82 (with Huynh–Feldt adjustment),
h2 ¼ .01, meaning that participants had essen-
tially parallel attention learning curves regardless
of the number of instances shown simul-
taneously on the computer screen (presentation
mode).

Individual differences in attention and classification
accuracy
As in Experiment 1, substantial individual differ-
ences were observed in classification accuracy and
attention allocation learning curves. Plots of
these individual learning curves are shown in
Figure 11. The dashed lines in each panel of the
figure show the relative attention allocated to

Figure 10. Experiment 2: Observed attention allocation by

dimension across blocks of trials. Dimensions are renumbered so

that the most viewed diagnostic dimension is labelled Dimension

1, and the less viewed diagnostic dimension is labelled Dimension

2 (Dimensions 3 and 4 are numbered as in Table 2). A.

Multiple-instances condition. B. Single-instance condition.
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Dimensions 1 and 2 across blocks for that
participant. Classification accuracy is also plotted
(the solid lines) As in Experiment 1, there is a
very high correlation between the total attention
allocated to Dimensions 1 and 2 and classification
accuracy, both within individual learners and
between learners. Furthermore, the total amount
of attention paid to Dimensions 1 and 2 averages
near 1 for all but 2 of the 13 participants,
indicating that most participants used a rule-
based learning strategy. Thus, these joint
attention–accuracy results lend support to the
widespread assumption in models of classification
learning that attention learning is a critical com-
ponent in such learning. They also support the
idea that human learners are sensitive to cost–
benefit considerations in allocating attention
during category learning.

Discussion

The data on feature viewing times in Experiment 2
show that category learners quickly learned to allo-
cate attention primarily to the diagnostic
Dimensions 1 and 2. However, a majority of par-
ticipants adopted a minimal or efficient feature-
testing strategy, focusing their attention primarily
on only one of the two diagnostic dimensions.
These data are inconsistent with the patterns pre-
dicted by prominent adaptive network models of
categorization such as ALCOVE, RASHNL,
and SUSTAIN. These models predict that in the
present situation, where both cues are equally pre-
dictive and encountered at the same time and
equally often, both cues should become associated
to the criterion with roughly equal attention paid
to both of them (Matsuka et al., 2007). Clearly,

Figure 11. Experiment 2: Individual differences in classification accuracy and attention learning curves for the multiple-instances condition.

Solid line ¼ classification accuracy. Dashed lines ¼ relative attention to the diagnostic Dimensions 1 and 2.

1088 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2008, 61 (7)

MATSUKA AND CORTER



this prediction does not hold for the majority of
human learners in this experiment. The observed
pattern of extreme asymmetry between the two
diagnostic dimensions in terms of allocated atten-
tion has two possible interpretations, not necess-
arily inconsistent. The first is that the asymmetry
is the result of a rule-based category-learning
process, one biased towards simpler represen-
tations. That is, if learners are testing and rejecting
explicit hypotheses, starting with simple uni-
dimensional rules (Hunt et al., 1966; Nosofsky
et al., 1994b), then only one dimension should
become associated with the criterion, and atten-
tion will be distributed asymmetrically, as observed
here. Another possibility is that category learners
are flexible in their attention/information search
and classification strategies and tend to adopt
minimal-cost sufficient solutions (Corter &
Matsuka, 2004; Matsuka et al., 2007). This
interpretation is consistent with the interpretation
given to the observation of self-terminating
feature search strategies in Experiment 1.

Two aspects of the data argue against the
interpretation of the attention curves as showing
clear evidence of a rule-based process biased
towards simple rules and for the role of optimiz-
ation guided by cost–benefit considerations in
producing these results. First, if a simple rule-
based process were at work here, then there
would be no reason to expect “switching” of the
dominant and nondominant dimensions, which
was observed for Subjects 5, 6, 8, 10, 12. Also,
for a pure rule-based process, the nondominant
dimension should receive zero attention.
However, Figure 11 shows that the nondominant
dimensions tended to receive small but nonzero
attention. Of course, to the extent that there is
any kind of “noise” in the data, for example due
to random clicks, the data may not exhibit a
perfect all-or-none pattern indicative of rule-
based learning.

In Experiment 2 the classification accuracy
learning curves for both presentation modes had
steeper slope than any condition in Experiment
1, including the 1D multiple-instances condition
that resulted in fastest learning. This demonstrates
that redundancy of predictive information (and the

elimination of irrelevant dimensions) leads to
enhanced ease of learning. The adaptive network
models of category learning discussed earlier
(ALCOVE, RASHNL, SUSTAIN) also predict
this benefit of redundancy in simulations we
have conducted. Rule-based models can predict
this advantage as well, but for different reasons.
A rule-based model that begins by searching for
simple rules will be able to find a predictive dimen-
sion more quickly on average in the case of the
redundant structure of Experiment 2. Finally,
models of category “goodness” that are based on
statistical measures of the mutual predictiveness
of features and categories (e.g., Corter & Gluck,
1992; Gosselin & Schyns, 2001; Matsuka, 2005a;
Shanks, 1995) also predict an advantage for cat-
egories with redundancy of predictive features. In
contrast, it is not clear that simple decision-
bound models (e.g., Ashby, 1992; Ashby &
Gott, 1988) would predict any advantage for
redundant diagnostic dimensions.

GENERAL DISCUSSION

We have reported two experiments using an
information-board paradigm to investigate how
attention is allocated in category learning. The
present results replicate several important findings
of previous studies (e.g., Kruschke et al., 2005;
Rehder & Hoffman, 2005a, 2005b) that used eye-
tracking methods to study the role of attention in
category learning and extend those results with
detailed process data on information search pat-
terns. The current studies provide new evidence
concerning the optimal attention allocation
hypothesis (Nosofsky, 1986; Rehder & Hoffman,
2005a). Most importantly, our results call into
question the fundamental assumption of many
single-process models of category learning that
attention is allocated solely at the level of stimulus
dimensions. Furthermore, the results of our exper-
iments reveal that individual learners show a
variety of joint patterns and attention and accuracy
learning curves, with most participants exhibiting
a pattern indicative of rule learning for these
structures.
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One of our results replicating a finding by
Rehder and Hoffman (2005a) is the observation
that in the first learning block even rule-based
learners showed evidence suggestive of exemplar-
based processing. This corroboration is important,
because our results are in contrast to the shift from
rule-based to exemplar-based processing inferred
by Johansen and Palmeri (2002). The finding
that learners show evidence of multiple strategies
in the same task can be seen as providing support
for multiple-systems models of category learning
(e.g., Ashby et al., 1998; Erickson & Kruschke,
1998; Smith et al., 1998; Waldron & Ashby,
2001), but other interpretations are possible
(Shanks & St. John, 1994; Zaki & Nosofsky,
2001). This important finding is documented in
our data not only by total feature viewing times
(Figure 4), but also by observed cell transitions
(Figure 6), corroborating and extending Rehder
and Hoffman’s findings based on the number of
dimensions viewed per trial. The convergence of
the present results with previous findings can be
taken as validating both methods (eyetracking
and our information-board method) as means of
studying attention allocation processes in category
learning.

Our results extend those from previous eye-
tracking studies (e.g., Kruschke et al., 2005;
Rehder & Hoffman, 2005a, 2005b) by reporting
detailed analyses of the sequence of information
access, including contrasting information search
patterns before and after training feedback is
given. This latter aspect of the data is critical, in
our view, because information search before and
after feedback may serve different purposes.
Information search before feedback may be
aimed mainly at identifying exemplars or finding
critical diagnostic features, so that a diagnosis
can be made. Postfeedback information search,
in contrast, cannot be aimed at gathering infor-
mation in order to make a diagnosis; rather, it
seems to largely reflect the learner’s efforts to
study exemplars or to discover and memorize
rules, and it occurs more in the early blocks of
training.

The present results extend the studies by
Rehder and Hoffman (2005a, 2005b) in another

way, in that the categories learned by participants
in the present study were not purely visual (e.g.,
line drawings of fictitious insects), but were
defined verbally, as a list of specific medical symp-
toms of hypothetical patients. Category-learning
researchers have developed computational models
of category learning that are claimed to be
applicable to both perceptual and “conceptual”
categories. Thus, a fully general account of
attention allocation in category learning ought
to be based on data from a variety of types of
categories.

The information-board method versus
eyetracking methods

The information-board methodology as
implemented here has potential advantages and
disadvantages relative to the use of eyetracking
equipment to gather data on attention allocation
during category learning. These differences
between the methodologies are summarized
below. However, it should be kept in mind that
because the present studies replicated a number
of important results of the Rehder and Hoffman
(2005a, 2005b) studies, these advantages and dis-
advantages may be argued to be relatively super-
ficial or trivial, and that both methodologies
seem to have the potential to capture the funda-
mental aspects of attention allocation in category
learning.

One limitation of the present method has to do
with the types of stimuli that can be studied.
Recent studies of category learning using eyetrack-
ing (Rehder & Hoffman, 2005a, 2005b) have used
perceptual-type stimuli (e.g., line drawings of fic-
titious insects), while the present studies using
the information-board method used more “con-
ceptual” categories (fictitious medical patients
described as a list of symptoms). It is clear how eye-
tracking methods can be used with verbally
described stimuli (e.g., Kruschke et al., 2005), but
it is difficult to envision how the information-
board method might be adapted to study perceptual
categories.

Another characteristic, and potentially a limit-
ation, of the information-board interface is that
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there is a small but real effort or cost involved in
clicking on a cell to view information. This fact
could have several consequences for understanding
the generalizability of the present results. First, the
real time and effort costs of clicking on a cell to
view its contents might have biased category lear-
ners towards the sort of minimal effort rules and
strategies observed in the present experiments.
Second, cost considerations might also result in a
bias towards use of simpler rules rather than
more complex multidimensional rules or exemplar
strategies. On the other hand, even an eye fixation
(with the attendant cognitive processing) has some
time and effort costs, though they may be argued
to be relatively trivial compared to the mouse
click. In any case, the role of cost considerations
in the choice of categorization strategy is an inter-
esting area for future research.

A third potential limitation of the information-
board interface implemented here stems from the
fact that only one square of the information
display can be uncovered at a time. This means
that information on configurations of features is
relatively less salient to learners than it might be
in a situation where all features are uncovered at
all times. This restriction could cause difficulty in
discovering complex multidimensional rules, or
(again) in a bias against the use of exemplar rep-
resentations. As we noted in the description of
the experimental procedure, in order to minimize
the effects of this restriction we programmed the
interface to present to the learner a brief (2-
second) viewing of all the features of an exemplar
paired with the category feedback after each diag-
nosis was submitted.

On the other hand, it can be argued that the
information-board interface has some advantages
over the use of eyetracking. One advantage
involves cost and availability. At the present time
eyetracking equipment is expensive and not yet
widely available, while software implementing
information-board displays can be easily pro-
grammed or even downloaded free of charge
from certain web sites. Furthermore, the use of
eyetracking equipment requires time-consuming
calibration, and the resulting data often contain a
fair amount of noise.

A potential threat to the validity of eyetracking
data is the problem of peripheral vision. Rehder
and Hoffman (2005a) report evidence that at
least some learners take in more than one stimulus
dimension with a single eye fixation, while studies
of selective attention in perception have firmly
established that attention can be switched to
different parts of the visual field even in the
absence of eye movements (Driver, 2001). The
information-board method as implemented here
restricts the learner to viewing only a single
feature value at a time, so that this problem does
not arise. Furthermore, in eyetracking some
viewers may “rest” their eyes in a particular
location even when not actively seeking to diag-
nose an instance or to learn an association. Such
“meaningless” fixations may be especially prevalent
after a category diagnosis has been made. Perhaps
for this reason, Rehder and Hoffman (2005a)
eliminated postdiagnosis fixations from their data
analysis. In contrast, because the act of clicking
on a cell in the information-board interface is voli-
tional, it seems far safer to assume that all instances
of viewing a feature are both intentional and
meaningful. The interpretable patterns of pre-
and postdiagnosis looking times that we found
support this conclusion.

One potential advantage of the information-
board method has already been discussed—
namely, that it can easily be used to study and
compare category learning in either single-instance
or multiple-instances paradigms. This issue could
potentially be investigated by eyetracking
methods, but there would seem to be stricter limit-
ations on the complexity of the display using
current eyetracking technology. The capability to
study category learning with multiple instances
simultaneously present can provide uniquely rich
data on the processes of attention allocation and
information search in category learning. For
example, we assume that within-dimension cell
transitions are indicative of rule-based classification
strategies and that within-row cell transitions
are indicative of exemplar-based strategies.
Note, however, that these data do not directly
bear on the nature of category representations
in memory. For example, either classification
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strategy could be used with an underlying exemplar
representation.

A cost–benefit account of categorization
strategy and attention allocation

In the present paper we have argued that cost–
benefit considerations may influence the strategies
adopted by category learners, including their
attention allocation behaviour. The need for such
an approach may be emphasized or even exagger-
ated by use of the information-board interface,
because a cost–benefit approach to understanding
learners’ attention may be needed only when infor-
mation search is volitional and relatively “expen-
sive”. But the magnitude of the total viewing
times found in the eyetracking studies of simple
visual stimuli by Rehder and Hoffman (2005a,
2005b) seem to suggest that volitional processes
must also be at work there—while saccades may
be involuntary, the act of keeping one’s eye
focused on a single part of a visual “object” for
hundreds of milliseconds suggests a voluntary act
of visual inspection. Furthermore, while it could
be argued that in eyetracking the costs of gathering
complete information on an exemplar’s features are
trivial, if the associated costs of an eye fixation on a
dimension were zero there would be no reason that
a learner in an eyetracking study would ever prefer
a rule-based strategy over an exemplar-based
strategy.

It is worth noting that in multiple-systems
model of category learning attentional processes
can be expected to differ for different modules.
For example, it seems reasonable to assume that
attention is volitional and sensitive to cost con-
siderations in a rule-based learning component,
but more automatic for an exemplar-based or
similarity-based implicit learning module. This
idea recalls Posner and Petersen’s (1990) proposal
of a “hierarchy” of attention mechanisms in
humans (see also Driver, 2001; Maddox et al., 2002).

The idea that learners may consciously decide
which dimensions or features to investigate in
order to classify the instance, and that they may
(or may not) make these choices according to
optimal or rational principles, has clear

connections to research in decision making. For
example, Gigerenzer and colleagues (e.g.,
Gigerenzer & Goldstein, 1996) have described
patterns of evidence accumulation and use that
they characterize as documenting the existence of
“fast and frugal” decision heuristics, heuristics
that lead to very good (though not always
optimal) decisions with very low cost. The one-
dimensional strategies employed by category lear-
ners in Experiment 2 could be explained by the
operation of such a heuristic. A number of other
studies (e.g., Ford et al., 1989; Newell et al.,
2003; Payne et al., 1988) have documented that
individuals in such decision tasks display a
variety of strategies, with some participants adopt-
ing fast-and-frugal heuristics and some learners
collecting more comprehensive information
before deciding on a response.

The optimal attention allocation hypothesis

The patterns of attention allocation that we
obtained in Experiment 1 using feature viewing
times as the basic measure of attention tended to
corroborate the optimal attention hypothesis for
categories describable by simple rules, consistent
with the conclusions of Rehder and Hoffman
(2005a). However, our detailed analyses of infor-
mation search patterns by learners in our four-
dimensional category structure condition revealed
that by the final learning block, a majority of suc-
cessful learners had refined their information
search strategies to terminate after viewing a
known diagnostic feature, rather than allocating
attention evenly across all stimulus dimensions.
As discussed in more detail below, this result
calls into question the basic assumption of dimen-
sional attention allocation incorporated into many
single-process models of categorization, including
the GCM and well-known adaptive network
models of categorization such as ALCOVE. At
the very least, it suggests that such dimensional
weighting is only one of a number of attention
allocation strategies that category learners are
able to call on. It also suggests that the optimal
attention allocation hypothesis may need to be
sharpened or rethought, to take account of more
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sophisticated attentional or information acqui-
sition strategies. The results from Experiment 2
also provide support for the optimal attention allo-
cation hypothesis, though the efficient strategies
adopted by participants indicate that effort or
cost considerations can affect the specific strategy
adopted.

Reevaluating the idea of dimensional
attention

Results of the present experiments show that
people tend to develop not just optimal, but also
maximally efficient (from a cost–benefit stand-
point) patterns of attention allocation during cat-
egory learning. Furthermore, the 4D condition of
Experiment 1 provides evidence that attention
may not be allocated on a dimensional basis, as
assumed by prominent theories of category learn-
ing such as the GCM, ALCOVE, RASHNL,
and SUSTAIN. If learners can allocate attention
separately to individual values of a stimulus
dimension (or develop unique attention profiles
for specific exemplars or subcatgeories of exem-
plars), then the idea of dimensional “weighting”
does not seem to be an accurate or complete
description of how people search for relevant
diagnostic information in classification learning
tasks.

Rehder and Hoffman (2005b) analysed their
data for evidence that people may allocate atten-
tion differently for individual stimuli, terming
this possibility stimulus-specific attention (SSA).
They found no evidence in their data that atten-
tion allocation patterns varied among the 16 trans-
fer stimuli. They did not report any analyses of
attention allocation or information search
sequences by specific category, as we did in
Figure 8. For our stimuli, it seems unlikely that
attention or information search patterns would
differ substantially for individual exemplars of
each of the four categories A–D. However, for
more complex structures in which the set of diag-
nostic or identifying features varies for individual
exemplars within a category, our results offer
some reason to believe that stimulus-specific
attention patterns may arise.

While our results call into question the assump-
tion of dimensional attention allocation incorpor-
ated into many single-process models of
categorization, we do not claim that such models
cannot account for our learning data. ALCOVE,
for example, would have no trouble accounting
for learning curves on classification accuracy in
the 4D condition of our Experiment 1. In the
4D structure ALCOVE would allocate attention
evenly across dimensions, but specific feature-to-
category association weights would be learned
from each diagnostic feature value to the corre-
sponding category. Of course, this account calls
into question the identification of the dimension
weighting parameters with explicitly allocated
attention, suggesting instead that for at least
some structures empirically observed attention
may be more closely correlated with specific
learned feature-to-category association weights
than with the dimensional weighting parameters.

We also do not claim that exemplar-based
models cannot be extended to account for the pat-
terns of information acquisition observed in our
studies. As observed above, dimensional cell tran-
sitions indicate a rule-based classification decision
strategy, but do not rule out exemplar-based rep-
resentations of the categories in memory.
Furthermore, even the self-terminating search
strategies observed in Experiment 1 could be
accounted for with exemplar-based models that
assume incremental acquisition of information,
such as the experience-based random walk
(EBRW) model of Nosofsky and Palmeri (1997),
or the extended generalized context (EGCM)
model of Lamberts (1998) and an extended
version of EGCM that model classification
response time (EGCM-RT: Lamberts, 2000). For
example, the EBRW model terminates information
acquisition when a set decision criterion is reached.
Although the EBRW assumes parallel processing
of stimulus dimensions, it could be extended to
account for sequential (and volitional) selection of
dimensions. The EGCM-RT model assumes that
comparison of a presented stimulus to exemplars
stored in memory is a time-consuming process.
Under time constraints, or when the acquisition
of information has nontrivial cost (as in the
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information-board interface), the decision process
to classify a presented instance may operate on
incomplete information. The standard version of
the EGCM-RT assumes that perceptual salience
of a dimension affects its “inclusion rate”, whereas
in the information-board interface it is more
likely to be the informational utility of a dimension
that affects its probability of being sampled by a
learner. Thus, the EGCM-RT might be able to
account for self-terminating search, but with some
modification. The EBRW model might also be
able to account for the observed asymmetries in
attention to the two diagnostic dimensions of
Experiment 2, since this model assumes that
search terminates when sufficient evidence has
accumulated favouring one of the classification
responses. Similarly, the EGCM and EGCM-RT
assume that the number of dimensions sampled is
under strategic control by the learner, and thus it
too could be applied to predict “fast and frugal”
classification strategies.

We believe that at a minimum our results call for
a reinterpretation of the dimensional attention par-
ameters of single-process models of category learn-
ing such as ALCOVE. Medin and Schaffer (1978)
originally suggested that the dimensional weighting
parameters of their context model might reflect
hypothesis-testing processes. The present results
support this interpretation, because the empirical
measures of attention provided by the present
studies document tendencies towards “optimal”
attention learning, but not in the simple dimen-
sion-based pattern predicted by ALCOVE and
other adaptive network models. It may be that
stimulus “dimensions” are not the correct level of
analysis at which to measure attention allocation
and to assess its optimality (cf. Kersten et al.,
1998). This conclusion suggests the need for
computational models of category learning that
allow for the possibility of exemplar-specific or
category-specific attention patterns (e.g., Aha &
Goldstone, 1992; Kruschke, 2001; Matsuka, 2006;
Sakamoto, Matsuka, & Love, 2004).
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