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Abstract— Extended human-robot interactions possess
unique aspects which are not exhibited in short-term
interactions spanning a few minutes or extremely long-term
spanning days. In order to comprehensively monitor such
interactions, we need special recording mechanisms which
ensure the interaction is captured at multiple spatio-temporal
scales, viewpoints and modalities(audio, video, physio). To
minimize cognitive burden, we need tools which can automate
the process of annotating and analyzing the resulting data. In
addition, we also require these tools to be able to provide a
unified, multi-scale view of the data and help discover patterns
in the interaction process. In this paper, we describe recording
and analysis tools which are helping us analyze extended
human-robot interactions with children as subjects. We also
provide some experimental results which highlight the utility
of such tools.

I. INTRODUCTION

Human-robot interaction can be studied from either the
perspective of the human participant or that of the robot. In
the former case, the robot’s behavior can elicit a response
from the person, either externally observable or internally
felt. Similarly from the robot’s perspective, the discernible
actions of the human partner can trigger behaviors in the
robot in response to those stimuli. Internal state changes can
also occur. The great challenge of human-robot interaction
is that together, the robot and human (or humans) form a co-
dependent relationship mutually influencing their responses
in a continuous cause and effect pattern. One cannot con-
sider each party in isolation when developing models for
interaction. When working with humanoid robots, studying
the interaction becomes more sophisticated as the appearance
of the robot can raise expectations about the richness of
communication and social protocols that need to be observed.

We have observed in our previous work in humanoid
robots [2] that a person’s impression of the robot can evolve
or change during the course of the interaction session itself.
As subjects(children in this case) attempted to communicate
with the robot and observed various behaviors, their atti-
tudes changed and consequently, behavioral responses. The
cumulative behavior of a robot over an extended amount of
time can begin to influence a person’s attitude toward the
robot. This is a phenomenon that cannot be easily observed
with short exchanges such as when a person makes a quick
query to a robot. On the other end of the spectrum, very
long-term human-robot interaction over the course of days
or weeks can be influenced by many other factors not directly

attributable to the robot. For example, there may be events
in person’s daily life that could affect their mood and affect
any consistency being sought in the study.

For this reason, we chose to focus our studies on extended
interaction sequences where a person may interact with
a robot in a continuous, uninterrupted task ranging from
several minutes to about an hour in length. The length of
an extended sequence is long enough to observe multiple
turn-taking exchanges and patterns of behavior in both the
robot and human. At the same time, the scope of interaction
is typically restricted to a particular task domain. In such
a setting, some delayed responses may occur for events
that happened prior to several interaction exchanges. For
example, fear can arise as a response which may not be
exhibited immediately but finds an outlet after it builds up
beyond a certain threshold.

A. Requirements

The time scale of events of interest can vary significantly.
Changes of head pose or eye gaze can occur with a second as
is common in many micro-behaviors [7]. On the other hand,
the peripersonal space between the robot and person may
vary slowly over a period of many minutes. Therefore, it is
important that the monitoring and analysis of the interaction
is conducted using tools which can handle multiple spatio-
temporal scales so that nothing is missed.

The monitoring and recording of interaction should em-
ploy multiple, synchronized sensor modalities. The data
obtained thereby provides multiple sources of evidence for
analysis. Also, the interaction should be captured from multi-
ple viewpoints to observe nuances that might be missed from
a single, fixed viewpoint. For example, separate cameras
are needed to record a person’s facial expressions and an
overhead view of the interaction setting. These multiple
video streams need to be time-synchronized to produce a
consistent, integrated visual perspective of the interaction.

By their very nature, recordings of extended interaction
produce a very large amount of data. Usually, analysis
involves manual annotation(coding) for events of interest in
the recorded data(e.g. audio, video) of the interaction session.
Typical annotations are done frame-by-frame for video and
short segments of time for audio. Often several passes over
the same data have to be made by an individual or with
multiple coders to counteract human subjectivity. Given the
data rates at which recording is done by today’s state-of-art
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tools, the annotation process can be extremely labor-intensive
and error prone when sessions last close to an hour. The
problem is exacerbated when multiple video streams from
different viewpoints are being recorded. As some phenomena
can occur over several time frames, if the observer is not
explicitly looking at the right time scale or the right view,
crucial interaction cues can be missed.

Therefore, tools that can help eliminate the arduous task
of coding micro-behaviors should be utilized. This includes
applying state-of-the-art computer vision algorithms to au-
tomate the detection and documentation of micro-behavior
occurrences as much as possible. In order to gain confidence
that no false positives or false negatives occur, comparisons
of the performance of computer algorithms with human
judges should be made.

One contribution of the paper is a description of the tools
developed to meet the aforementioned requirements so that
they facilitate analysis of extended interactions. In addition,
we describe some of our experiences using these tools and
applying the mentioned analysis methods. To begin with,
a brief overview of the measurement and analysis tools is
presented below.

B. Measurement Tools

In Section III-A.1, we describe a scaleable system for
recording synchronized multiple viewpoints during an in-
teractive session. In addition to automatic behaviors, stud-
ies often have the requirement to model carefully scripted
scenarios or offer the investigator manual controls to create
repeatable conditions during interaction. Section III-A.2 de-
scribes our Wizard-of-Oz tool that allows a combination of
manual and automated behaviors with auto-logging of robot
behavior events. To obtain a direct measure of physiological
arousal, we use skin conductance sensors. The associated
data stream can be synchronized with the other audio and
video data streams during post-processing.

C. Analysis Tools

Once all the data is recorded, the enormous amount of data
needs to be examined and explored for possible patterns. The
SAMA system described in Section III-B.1, illustrates how
the multi-view camera data can be processed to obtain head
pose and gaze-related annotations. Our other tool, MOVE-IT
allows various data viewers to have their layouts customized
and information exchanged to produce tools to allow linked
exploration of data across a common timeline (Section III-
B.2).

For the remainder of the paper, Section II discusses related
work. Section III describes in further detail our suite of
tools we use both for measurement and analysis of session
data. Section III-B.2 describes preliminary experiments to
assess the efficacy of analysis tools and associated results.
A discussion on our experiences using these tools follows in
Section V. We end by mentioning some recommendations
for extending both the tools and analysis methods in Section
VI.

II. RELATED WORK
A survey of human studies for HRI was done in [9] while

studying the use of large sample sizes and multiple evalua-
tion methods. The work also provides recommendations for
planning, designing and conducting studies in HRI.

Most studies of human-robot interaction employ either
a single camera or at most two cameras for studying the
interaction. A study of detecting user engagement with a
robot companion is described in [10] wherein they use 3
video cameras while [9] mentions a system similar to the
one presented in this paper albeit with lesser number(4) of
cameras.

Physiological sensors which can measure heart-beat, skin
conductance etc. [16] [17] have been quite popular since
they can provide a direct measure of subject’s arousal, see
[12] for an example. In [13], an unconventional, comfort-
level indicator device is described which can be used by
subject to indicate degree of discomfort with current state
of interaction. The authors argue that deriving a high-level
concept such as comfort from rich physiological data is not
straightforward. They further mention as an alternative that
subjects are very familiar with assessing their own subjective
comfort level and may be able to communicate the same
better using their indicating device. However, they concede
no advantage gained from using this device.

Annotation of interaction data is usually manual with
a large variation in the time durations. A comprehensive
survey of multi-modal annotation tools is done in [14],
which includes the free tool we have used(Anvil). The need
for an automatic recognition and analysis system has been
acknowledged by many researchers [7] [8]. In particular,
[8] describes an extremely large, distributed system for
collecting data on hospital activities and automatic process-
ing of the 25 Terabytes of resulting data. However, the
system needed day-to-day manual coding by 4 people for
priming the automated analysis. In [15], a multi-modal
approach to analyze human-robot interaction is presented
while describing a tool named Interaction Debugger for
data presentation, annotation and analysis. By combining the
monitoring and analysis tool, they adopt a unified approach
to data being recorded and hint at resulting advantages for
real-time modification of robot’s behavior. However, there
could be issues of cognitive load arising from GUI window
placement and sheer amount of data being presented via the
visualization tool. The benefits of matching interface displays
and controls to human mental models include reductions in
mental transformations of information, faster learning and
reduced cognitive load [11] – a factor which inspired the
design of our Wizard-of-Oz and MOVE-IT interfaces. In the
interest of focus and space, we shall not present the numerous
references to various Wizard-of-Oz systems and robot control
interfaces.

III. TOOLS AND METHODOLOGY
A. Measurement tools

1) Distributed camera system: In order to capture the
complete range of behavior, 7 cameras were arranged in the



Fig. 1. Distributed recording system

observation room to capture several micro-behaviors (refer
to Figure 1 for camera placements). The room itself had
windows on one wall that allowed parents to observe the
experiments from outside the room.

Camera-1 faces the child to capture facial expressions.
Camera-2 provides a side view to determine the degree of
body lean posture relative to a vertical reference line. The
degree of lean can indicate level of interest in the activity.
Camera-3 provides an overhead view of the table and child
which is helpful for observing the choices the child makes
during the task as well as any hesitation therein. Camera-4
features a head-mounted camera that allows us to estimate
the gaze direction of the child as well as what the object of
attention is in her vision. Camera-5 is taken from humanoids
own cameras. This is valuable for recording what is directly
observable by humanoids own sensors and consequently
by any vision detection algorithms created. Camera-6 is
a Sony high-definition DVCAM camera providing a wide
field of view of both humanoid and the child face to face
to observe whole body movements. Finally, Camera-7 is a
Sony Handycam providing another view of the face from a
different angle. Since facial expressions can give us a strong
indication of the emotional state of the child, two viewpoints
were established for the face since children often change
their face orientation frequently. Cameras 1-3 are 640×480
JAI/Pulnix Gigabit Ethernet machine vision cameras, model
TMC-6740GE. All three cameras are connected via Gigabit
Ethernet cable directly to a single server which was able to
directly digitize all video onto its hard drive at a rate of
15 fps. For Camera 4, we used a small miniature camera,
measuring 2.5cm× 2.5cm by Korea Technology and Com-
munications Co., Ltd., model KPC-VSN500NH, providing
768× 494 resolution, equipped with Swann fish-eye 150
degree lens to approximate the wide field of view in human
vision. To calibrate the head mounted camera, we instructed
the children to look at specific targets and adjusted the
camera so that the target was in the center of the image.
One potential problem is independent eye-gaze shifts from
head direction, however [1] show that for table-top tasks,
head motions correlated well with coded eye positions.

Audio was captured separately using a wide-array receiver
microphone as well as lapel microphones attached to the
child, of which the latter provide clear distinct utterances.
The wide-array receiver microphone was synchronized with
Cameras 1-5 and all data samples were timestamped to the
same clock, eliminating the need for manual synchronization
and digitizing. This procedure saved us countless hours of
manual processing as we collected over 5 TB(Terabyte) of
audio and video data for analysis.

2) Wizard-Of-Oz: The Wizard-of-Oz (WoZ) technique
refers to the process of controlling a robot using surreptitious
means of concealing the human operator so that the person
interacting with the robot is unaware that it is under human
control and believes it is acting autonomously. The method
is a useful prototyping tool for evaluating perception and
behavior algorithms prior to investing the effort to implement
them. In the context of long-term interaction, there is a
higher chance that the robot will encounter situations it
cannot handle, and WoZ control interface can aid in helping
the robot get over potential technical problems with its
autonomous algorithms.

We have developed a WoZ control interface in our soft-
ware framework called MOVE-IT (Monitoring, Operating,
Visualizing, Editing Integration Tool) [6]. The framework
allows various interactive elements to be combined to create
a customized interface that is suitable for the particular
task the robot will be used for in a study. For example,
in Figure 2, our WoZ interface is used to interact with a
little girl. The GUI portion of our interface features a script-
based interface where an interactive script can be authored
containing sequences of robot commands such as playable
motion sequences and dialog. However, it can also contain
conditional commands that allow a variety of responses to
be specified for any interaction event in the script. There
is also an array of buttons that can be customized to
produce responses on-demand to react instantly to events
that are not part of the script. Finally, a text prompt allows
arbitrary dialog to be generated by the human operator. A
keyboard manufactured out of silicone is used to prevent
subjects from hearing the tell-tale typing noises that might
betray the illusion of the WoZ. Although this functionality is
useful, it also takes up a considerable amount of screen real
estate. To alleviate this problem, the interface has adjustable
transparency so that the operator is still free to see the area
underneath which is devoted to visualization.

The visualization part of our WoZ interface allows the
operator to observe multi-modal phenomenon, ranging from
the current joint configuration of our robot to the location
of sound sources in the room. The video from the robot’s
cameras are streamed and displayed on a panoramic surface
in front of the robot model so the operator can see the
robot’s viewpoint, allowing remote (and therefore hidden)
operation. This interface can constrain the operator to the
robot’s sensor limitations, which is useful as any computer
algorithm would be subjected to the same constraints. The
video display is also interactive in that the operator can
click on any point of the display and have the robot look



Fig. 2. Wizard-of-Oz control interface

or point in that location. We have found this essential for
producing attentive behaviors. Augmented information can
be displayed on the display that may be computed by the
robot’s vision algorithms. For example, in our humanoid
model, our attention system identifies and labels the most
likely speaker by combining sound localization and face
detection algorithms.

For the human operator, WoZ control can be a very
physically and mentally exhaustive process, as a single
operator needs to be responsible for a host of verbal and non-
verbal behaviors. To alleviate this, multiple configurations
of our WoZ software can be run simultaneously so that
control tasks can be split between more than one operator.
For example, in our studies, we have one operator control
dialog and the scripted interaction while another focuses on
nonverbal pointing and looking. The combined effort of both
operator provides a more lively robot than possible with a
single operator. Although we use instant messaging software
to communicate silently between operators, practice sessions
are useful for developing better coordinated behavior. Fi-
nally, all robot commands generated through the WoZ are
time stamped and logged so that no manual annotation of
humanoid’s behavior is required, allowing the researcher to
only focus on coding the human behaviors.

B. Analysis tools

1) SAMA+Anvil: The basic design goal of using
SAMA(Subject Automated Monitoring and Analysis) along
with Anvil1 is to analyze the sensor data (in particular,
camera information) to provide clues to trends in the human-
humanoid interaction. For instance, we may wish to know
instances when the subject turned away from the humanoid
or instances when humanoid and subject were speaking
simultaneously (speech barge-in). SAMA analyzes the multi-
view video data collected during the recording phase and
outputs a semantic annotation tag set for each time-slice.
For each time instance, it simultaneously processes the
corresponding frame from each of the 5 cameras. For each
frame, various pose-related face properties such as head-roll,

1Anvil is a free video annotation tool which offers provides multi-layered
annotation based on a user-defined coding scheme. Refer to [4] for more
details

tilt, pan are estimated. The relative position of the camera
viewpoints (front, profile, side etc.) is also known. The face
properties from all the viewpoints along with viewpoint
information are combined and processed using a rule base,
which determines the final semantic tag set for that time
instant.

We now describe some details of how the tag set
is produced for each set of input frames from the
different cameras(see Figure 3). To determine the general
direction(referred to as View-Zone) in which a subject’s
face is oriented, the face detection confidences from all
ground camera(humanoid,PULNIX) are considered. If more
than one camera view provides a good face detection
confidence beyond a certain threshold, the viewing direction
is considered to be between the cameras corresponding to
the top-most two face detection confidences. If there is only
camera for which confidence exceeds the aforementioned
threshold, then the subject is considered to be directly
looking towards that camera. To determine whether the
subject is looking down, at the table or upwards, the
head-roll value is thresholded with four thresholds –
TABLE-BACK,TABLE-FRONT,ROBOT-EYE-LEVEL,UP-
ABOVE(Figure 3(c)). To determine whether the subject’s
head is tilted, two thresholds – TILT-LEFT, TILT-RIGHT
are used on head-tilt value(Figure 3(b)). To determine
which way the subject’s head is turned with respect to a
vertical axis, the head-pan value is thresholded using five
thresholds – PAN-RIGHT-EXTREME,PAN-RIGHT,PAN-
CENTER,PAN-LEFT,PAN-LEFT-EXTREME(Figure 3(a)).
Particular combinations of values within a tag set can
be associated with intuitive human-robot interaction
configurations. For example, View-zone=HUMANOID-
CAM,head-roll=ROBOT-EYE-LEVEL,head-pan=PAN-
CENTER may indicate that the child is looking directly
at the humanoid. Yet another setting can indicate looking
down at the table or looking up at the ceiling etc. Such
configurations can be used to initiate configuration-specific
behavioral responses in the humanoid’s interaction model.
In this way, the entire set of videos associated with an
interaction episode can be coded with information on
the current gaze location of the subject. The analysis
from SAMA provides useful cues for where to focus on
by indicating low-level gaze cues and their transitions.
For this purpose, we use Anvil [4](see Figure 4). By
combining the analysis from SAMA on video data with data
from other sensors (audio, physio), we get an opportunity
to examine hitherto unobserved long-range relationships
between interaction elements. By combining information
from multiple view-points, SAMA can provide an accuracy
in tagging beyond what would be possible from a single
view-point.

Refer also to Section III-B.2 for a quantitative assessment
of the SAMA tool.

2) MOVE-IT: MOVE-IT (Monitoring, Operating, Visual-
izing, Editing Integration Tool) [6] is our software framework
for combining interactive visual elements together to create
cohesive applications. In Section III-A.2, we describe how
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(a) Threshold settings for head-pan

TILT-RIGHTTILT-LEFT

(b) Threshold settings for head-tilt

UP-ABOVE

ROBOT-EYE-LEVEL

TABLE-FRONT

TABLE-BACK

(c) Threshold settings for head-up-down

Fig. 3. Threshold settings used to obtain semantic tag sets in SAMA

Pitch Physio

Speech and Gesture

SAMA annotations (gaze)

Time-sync’ed multi-view video

Fig. 4. Screenshot of ANVIL showing the time-synchronized multiple
viewpoint video at the top and the speech, physio annotations and the
automatically generated SAMA annotations.

MOVE-IT was used to create a WoZ interface for the robot.
Here, we used MOVE-IT to create a multi-modal analysis
tool to obtain synchronized access to pre-recorded video and
physiological skin conductance (which measures arousal)
data streams. MOVE-IT provides the common workspace or
canvas to place interactive elements like an audio-visual me-
dia player and a data plotter. The interface is visually simple
and uncluttered, as only the interactive elements one needs
for analysis are visible, without the clutter of unnecessary
GUI elements. Each element has built-in functionality and
behavior, but can also communicate events to each other
by connecting the signals of one element to a function of
the other. This allows the elements to have synchronized or
dependent behavior on each other.

We needed to synchronize the video playback with the
physiological data streams. By connecting the time bar of
the media player to the time marker of the data plotter, we
can highlight where in the plot the video corresponds to.
More importantly, a command can be given to synchronize a
point in a video to a point in the plot sequence. Alternatively,
clicking on the data plot would cause the media player to
jump to the corresponding frame. The plotter can also zoom
in on a more narrow time range facilitating multi-scale time

Fig. 5. Synchronized video and skin conductance streams.

analysis from very short-term micro-behaviors to observing
long term phenomenon.

Anvil itself is not well-suited for large, long-term video
due to memory management issues, since it was originally in-
tended to annotate short-term interactions. The media player
in MOVE-IT, in contrast can handle very large high-quality
video streams that can be several Gigabytes in size. It may be
more informative to visualize multi-modal information such
as simulataneous encoding of location and volume in a 2-
D image display rather than as multiple time series of data
channels. For high-dimensional data with a high degree of
correlation such as joint angles of a robot, visualizing the
robot directly as in MOVE-IT is preferable than viewing the
time series of all joints individually.

IV. APPLICATIONS OF SAMA
We describe some working examples in which SAMA can

be applied for data analysis. Video data of 10 test subjects
(children between ages 4-to-8) was used to evaluate SAMA’s
capabilities. For the purposes of analysis, each video is
divided into four sequential portions – Practice, Beginning,
Middle and End – corresponding to the phases in the inter-
action session. SAMA’s multi-view camera information and
the multi-scale annotation can be applied as an assessment
tool at three different levels.



(a) Camera position view with child gaz-
ing towards humanoid

(b) Head movement Roll where child’s
eye is at level of humanoid

(c) Head movement Pan, where child is
centered facing toward humanoid

Fig. 6. The graphs show the percentage of time spent looking at humanoid at different sections in the interaction. Practice refers to the training practice
session in the beginning. The actual session is divided evenly into beginning, middle and end.

Fig. 7. Comparing different properties(x-axis) as measured by SAMA for
incidents where child looked at humanoid. N against each property denotes
number of incidents recorded for that property.

At a general level, SAMA can analyze different pose-
related face properties (head-roll, tilt and pan) and camera
view positions. For example, in Figure 6, we consider
one camera position (a) facing center toward humanoid, and
two different head movements: (b) head movement Roll for
incidents where the child’s eye level is at humanoid’s and (c)
head movement Pan for incidents where the child is faced
center toward humanoid. As can be seen from the graphs in
Figure 6, even though the graphs differ slightly between the
pose-related face properties and the camera view position,
all three sources show similar attention patterns in children
as the session progresses.

At an informative level, SAMA can analyze different
camera view-points (frontal, profile, side) and the pose-
related face properties (head-roll and pan) to help determine
the most informative data source for analysis. One example
(See Figure 7) is when we wish to determine which of the
properties was useful to analyze for the situation of direct
eye-contact with humanoid. In this case, SAMA provides the
relative ratio between looking directly at the humanoid versus
looking elsewhere for various properties (ViewZone, Roll,

Fig. 8. SAMA compared to coding incidents by hand (manually).

and Pan in Figure 7). The property with the best ratio value
(Roll in this example) can be then used after performing such
analysis.

At the application level, SAMA can assist in manual anno-
tation by potentially speeding up the often time consuming
and labor intensive task. In Figure 8, a comparison was
made between SAMA and manual annotation to see (a)
whether SAMA can generate a similar data pattern as manual
annotation and (b) examine the differences in the number of
incidents recorded. Two video clips where children interacted
with the humanoid were examined (a 4-year old and 8-
year old). To ensure reliability of the coding for the manual
annotation, three human coders separately scored the video
clips, with 95% agreement. As seen in the graphs from
Figure 8, SAMA was able to generate similar patterns overall
to the manual annotation.

V. DISCUSSION

In our experience studying extended human-robot inter-
action, there are three important requirements that must be
addressed: simultaneous observation of human and robot,
multi-modal data recording and analysis, and the ability to
study phenomena at different time scales. This was evident
in one of our previous studies involving humanoid teaching



children how to set a table [2], where immediate physical
details such as humanoid’s voice and motions had a notice-
able effect on learning. Longer term phenomena, such as
the structure of the lesson (authoritative versus interactive),
also affected learning. The tools we are developing were
designed to meet these needs for studying extended human-
robot interaction.

A. Simultaneous observation

In our operation of the WoZ interface, it was important not
only to see the human participant through humanoid’s camera
”eyes”, but to also see humanoid’s current joint configura-
tion. This provides feedback to the operator that the robot is
obeying its commands, but can identify potentially dangerous
situations if a child gets too close to the robot while it is
moving. In one case, we were puzzled why children kept
on trying to give picture cards to humanoid. However, once
we observed what humanoid was doing via WoZ, it became
apparent that some of humanoid’s pointing motions were
being interpreted by the children as the robot reaching out to
grab something. This helps us design humanoid’s behavior
to be less ambiguous. By seeing a computer-graphics model
of humanoid tied to its actual physical configuration, the
operator gets an idea of what the child is seeing. In our first
trial studies, our WoZ operator would dutifully click on the
video display to look at different areas of the screen. Because
she saw the camera display move around in response to her
commands, she thought the robot would appear attentive.
However, when we showed video of the entire interaction it
became apparent that humanoid’s head motions were very
slight and unnoticeable. The solution was to click on views
at wider distances apart to create more head motion as well
as using pointing while looking which creates noticeable arm
movement. In our multiple-WoZ scenarios, a live visualiza-
tion of humanoid allowed the dialog operator to watch the
behavior of the looking/pointing operator, providing better
communication and allowing one operator to feed and react
off the performance of the other.

The multiple camera views were also important in this
respect. Having cameras closely focused on the face, allowed
enough high resolution detail to be available to observe facial
expressions, while other cameras could capture the full scene
between the human participant and the robot. The head-
mounted camera was useful for identifying what children
were looking at, whether it being humanoid or other distrac-
tions in the environment (like the parents or researchers).
This prompted us to re-design subsequent experiments where
the parents were not visible and researchers were hidden
from view. The results were extended interaction sequences

where the children were less inclined to rely on other humans
for help, and interacted more directly with the robot.

B. Multi-modal Recording and Analysis

Our current measuring system records video, audio and
physiological data. Being able to synchronize the information
and visualize how their simultaneous signals in an intuitive
way was achieved with the MOVE-IT and Anvil tools. For
developing more robust perception algorithms, these modal-
ities can be obtained to create stronger confidence of state
estimates of the environment. For example, we combined
the sound sources with faces to identify speakers. On the
analysis side, studying multi-modal cues helps us identify
potential triggers and responses, each of which can occur in
a different modality. For example, a robot speaking (audio)
can trigger a child to look at the robot (visual).

In our current camera system, we did not note their
relative locations to each other. If we had done that, we
could localize the cameras in the environment and potentially
retrieve more 3-dimensional information of the scene being
viewed. Alternatively, depth or stereo cameras can be used,
but current designs can produce noisy or low-resolution data.
However, it remains unclear what kind of useful information
3-D knowledge can provide. Obtaining distance measures
between the person and robot can easily be obtained from a
top-view camera.

Because of its automatic and systematic nature, SAMA
records about 2-3 times more incidents than manual annota-
tion. However, since SAMA is found to generate a similar
pattern as the manual version(Figure 8), it can speed up
the data analysis. For example, a researcher can look at
the SAMA generated patterns to eyeball potential segments
in the video clip (e.g., more incidents found in the Middle
section than the Beginning). As a work in progress, the next
challenge will be to use SAMA with a larger data set.

C. Different Time Scales

Our original camera system captured all video streams
onto a central camera server. However, the frame rates
were not high enough to capture extremely short phenomena
such as quick gestures or microexpressions, which are brief
involuntary facial expressions [5]. By de-centralizing the
capturing to the local machines the camera were attached
to, we not only achieved faster frame rates, but produced a
scaleable system that allowed us to add additional cameras
easily. We had to make sure to synchronize all computers
to a common time server so that the videos can be later
synchronized when re-assembled as a mosaic.

Being able to see the entire timeline of interaction and
zoom in on specific segments were useful for quickly iden-



tifying interesting events. In the case of the physiological
data viewed in Figure 5, we could identify specific triggers
to unusual physiological arousal activity such as humanoid
suddenly talking after a long period of silence. At the longer
timescales, we could notice a pattern of alternating high
and low activity which coincided with the times when the
child was engaging with the robot and stopping to listen to
instructions from a computer.

For data with large sampling rates(physio) or dimensional-
ity (video, robot joint angles), it may be simply impractical
to view the entire interaction at one glance. One solution
is more automated analysis of the data, which is what
we resorted to with the SAMA tool for video. However,
other data mining techniques should be applied not only to
the high dimensional data within one modality, but across
multiple, simultaneous modalities. We are exploring ways
of combining rich visualization with automatic methods for
highlighting useful incidents across time.

VI. CONCLUSION AND FUTURE WORK

We have presented a suite of tools and methods that
we have developed for the purposes of studying extended
human-robot interaction. On the measurement side, multiple
camera systems, physiological measures, and a customizable
WoZ interface provides researchers with a granular view of
the interaction data and viewpoints to capture aspects of
interaction at multiple time scales and sensor modalities.

Although we have not used SAMA in an online real-time
fashion for the study, it is easy to do since the processing
is on a per-frame basis. Such a mechanism would provide
real-time gaze-related information to humanoid or a Wizard-
Of-Oz operator. This generic method, in turn can be used
for situations such as interaction repair or generating timely
responses, thanks to the ease of integration that the existing
communication framework [3] offers.

For analyzing the large amounts of data, automatic logging
of robot events and automated analysis of camera data help
minimize the amount of manual effort for coding and anno-
tating the data produced. Moving forward, we will continue
developing more intelligent tools for multi-modal analysis at
different time scales. The main goal will be not to replace the
analyst, but to assist the analyst in finding interesting details
rather than deal with cognitive burden issues that arise with
large volumes of data. Another direction would be to help the
analyst handle the complexity of the environment, including
keeping track of people and their social roles during group
interaction.

For robot designers, being able to pinpoint what works
and what does not is very useful for improving the overall
behavior of the robot to producing engaging human-robot

interaction. We are now able to capture an abundance of data
that records the sessions. Using this knowledge to extract out
important lessons and building intelligent behavior models
for interaction will complete and validate this effort.
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