
G. Stapleton, J. Howse, and J. Lee (Eds.): Diagrams 2008, LNAI 5223, pp. 242–256, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Transforming Descriptions and Diagrams to Sketches in
Information System Design

Barbara Tversky1, James E. Corter1, Jeffrey V. Nickerson2,
Doris Zahner2, and Yun Jin Rho1

1 Teachers College, Columbia University
2 Stevens Institute of Technology

bt2158@columbia.edu, corter@tc.edu, jnickerson@stevens.edu,
dzahner@stevens.edu, yjr2101@columbia.edu

Abstract. Sketching is integral to information systems design. Designers need
to become fluent in translating verbal descriptions of systems to a variety of
kinds of sketches, notably sequential and logical, and to translate among the
kinds. Here, we investigated these cognitive skills in design students, asking
them to design a system configuration starting from either a sequential diagram
or a sequential description. Although the two source descriptions were
logically equivalent, the diagram led to designs that corresponded more closely
to the source description – that is, designs with fewer omissions of crucial
components and links. Text descriptions led to more variable and less accurate
designs, most likely because they require more cognitive steps from problem
representation to problem solution.

Keywords: Diagrammatic reasoning, sketches, descriptions, problem representation,
information systems design, topological diagrams.

1 Introduction

Sketching is critical to design, whether for design of the concrete, products or
buildings, or for design of the abstract, information systems or corporate structures.
In designing, formative sketches show the components, walls, for example, or
computers, and their relations, spatial, functional, or temporal. In emphasizing the
components and their relations, sketches abstract out information not needed in early
stages of design such as the surface of the walls or the specifics of the servers. One
common task of designers, especially when working with clients, is translating a
verbal description of the requirements for a building or an information management
task into a sketch. On other occasions, designers need to translate one kind of sketch
into another, for example, transforming a plan into an elevation in the case of
architecture, changing perspective, or transforming a temporal sketch of information
transmission into a structural sketch of the components in the case of information
design, changing time to space. For design of information systems, the focus here, the
design task is made more challenging by the fact that it is the topology of the system

 Transforming Descriptions and Diagrams to Sketches in Information System Design 243

that is critical, not the Euclidean properties. The topology reflects the functional
organization of the system. This fact causes difficulty for novices, since sketches are
inherently Euclidean, and beginning designers bring Euclidean assumptions and
habits to the situation.

Designers must master many types of external representations. Often a client will
give the requirements to the designer verbally, and the designer will present the
initial design as a sketch. More conversation occurs, followed by more sketches.
Designers must be facile translators to and from diagrammatic representations. For
the design of information systems, there are two general types of requirements,
sequential and structural. Sequential requirements are step-by-step constraints, for
example, the steps from a customer’s request to the shipment of an item or from
placing an order with a supplier to the arrival of the goods. Structural requirements
fulfill a large set of sequential requirements, insuring that the right information gets
to the right sources efficiently, and that the wrong information does not get to the
wrong sources.

Because information systems involve links that function near the speed of light, the
Euclidean distance between components is usually not important. Instead, the number
of connections between system components and the nature of those connections are
critical. The components – computers, servers, and the like – and their connections or
links represent the functional structure of the system. Systems are represented
topologically; the components, called actors, as nodes and the connections or links as
edges. The placement of the nodes is of little importance, but the patterns of edge
connection are of high importance because they carry the functional structure.
Because information systems can have many interconnections, diagrams of them have
developed conventions to increase transparency by lowering clutter. One convention
in particular, the logical bus, reduces the number of edges that need to be drawn,
yielding a connectivity pattern that is often misinterpreted by novices. This
convention is widely used to represent Local Area Networks (LANs). Within a LAN
all system components are interconnected, however those interconnections are not
explicitly shown, but rather indicated by a superordinate line connecting all of them,
as shown in Fig. 5c.

These abstractions are not always well understood by the users of technology.
Nor are they well understood by novice designers [1]. Experts are expected to be
able to understand the deep functional structure of a system, that is, its underlying
topology, from many different forms of surface representations, including
sequential diagrams, structural diagrams, natural language descriptions, and source
code. They are also expected to be adept at going from one surface representation to
another.

What are the consequences of translating from one external representation to
another? It is well known that the form of an external representation affects
interpretation and inference from it; think of doing multiplication with Roman
numerals (e. g., [2][3]). The present focus is a common task faced by designers,
translating one form of external representation to another, notably text to sketch and
diagram to sketch.

244 B. Tversky et al.

Here, students in a course in system design were asked to sketch the configuration
of two systems. In one case, the source for the design of the system structure was a
diagram of a sequence of operations the system should support. In the other case, the
source for the design of the structure of a system was text, a verbal description of the
same sequence of operations the system should support. Two questions are of interest:
Which source leads to better design sketches, and are there qualitative differences
between sketches produced from diagrams and sketches produced from text?
Especially for novices, there should be advantages to producing a sketch from a
diagram, that is, going from a sequential diagram to a structural design sketch. The
source sequential diagram will have already abstracted all the critical components of
the system. In addition, because the source sequential diagram shows one possible
temporal route through the information system, it also shows at least part of the
connectivity, the topological relations. A verbal description of the sequence requires
the design student to abstract the components and the links. Novice designers are
likely to miss some of them. Because verbal descriptions have fewer explicit
components and spatial constraints, they are likely to lead to more variable design
sketches.

The source, whether diagram or text, specifies one sequence of operations to be
accomplished by the system, but not all of them. Discussions with clients often begin
that way; the client outlines the major task the system is expected to accomplish.
That sequence does not completely specify the configuration. In order to construct a
complete system, the designer must bring in other considerations deriving from
general knowledge of information systems. For example, experienced designers might
realize that certain groups of components should be grouped as a LAN, with restricted
access. There are two ways that student designs could deviate from the minimal
constraints of the source: they could omit nodes or edges, or they could add them.
Omissions are always errors. Because the source problem does not completely
stipulate the design, additions could be errors or they could be creative or wise design
considerations.

The source representation is also expected to affect the actual spatial layout of the
design sketch, which is not specified by the source. Because systems design depends
on connectivity, the locations of components in the Euclidean world are not relevant;
consequently, the spatial locations of components in the sketches need not reflect their
locations in the world. One default for determining sketch location in the absence of
Euclidean constraints is reading order (e. g., [1][4]). Reading order predicts that the
layout of components in sketches where the source is text should correspond to
the order of mention in the text, and that the layout of components in sketches where
the source is a sequence diagram should correspond to the left-right order of the
sequence diagram.

A challenge for research on sketches is to develop a coding system, because there
is so much variability in spontaneous productions. Coding sketches is especially
challenging for topological sketches, where it is desirable to extract the underlying
logical structure from sketches that may differ in only superficial ways. Once this
logical structure is abstracted, it becomes possible to establish the equivalence of

 Transforming Descriptions and Diagrams to Sketches in Information System Design 245

diagrams, and to separately measure the surface and the logical dissimilarity of
diagrams. To these ends, we developed a technique for establishing logical
equivalences as well as similarities between different systems sketches and diagrams.
This involved the construction of a canonical graph, the nodes and links that
correspond to the minimal solution that incorporates the source constraints. The
student solutions can be compared to the canonical graph to assess omissions and
additions.

Since topological diagrams are used not only in information systems, but also in
such diverse fields as electrical systems, transportation systems, systems biology, and
geography (c.f. [6][7][8]), the coding system and insights into the production and
understanding of information systems sketches will have broader implications.

2 Methods

The predictions were tested in a Master’s level course in the design of information
systems. The thirty-six student participants had varying levels of expertise: some were
relative newcomers to information systems, and others were working professionals
with many years of system design experience. During the course, students solve a
series of increasingly complex design problems and bring them in for critique every
week [9].

Two problems were given to students in the present experiment. Each student
sketched the configuration design for two information systems, using a sequential
diagram as the source for one problem and using a text description as the source for
the other problem. The problems were chosen to involve the same number of nodes
(actors in UML terminology [5]), but to be in different domains. One problem, called
“FastStuff,” asked students to design a system that delivers purchased products to the
customer’s door. The other problem, called “HedgeFund,” asked students to design a
new Internet presence for hedge fund investors (see Figures 1 and 2). A source
diagram and a source text were developed for each of the problems. These different

Fig. 1. HedgeFund Diagram, given to half the participants, and HedgeFund text, given to the
other half. The diagram is in the Unified Modeling Language (UML) sequence diagram
format [5].

246 B. Tversky et al.

Fig. 2. FastStuff Diagram, given to half the participants, and FastStuff text, given to the other
half

problem representations are only approximately equivalent. Complete equivalence
would have resulted in either stilted text or unconventional diagrams, because the
two types of representation have differing conventions. For example, sequence
diagrams have an implied user on the left of the diagram that is never labeled, while
text descriptions of design problems usually explicitly mention the user. Textual
representations will often provide semantic information on the nature of an
interaction (describing the type of message transmitted), but may not say explicitly
where the interaction originates. However, this implicit information can usually be
derived from the context. In contrast, sequence diagrams show all interactions
explicitly, but do not give semantically meaningfully labels to the type of message
transmitted. Rather than try to exactly equate the types of information provided by
the two problem formats, we chose to use naturalistic problem descriptions that
resemble those that students would encounter in a design course or in actual work
settings.

Half the students were given the text source for FastStuff and the diagram source
for HedgeFund; the other half were given the diagram source for FastStuff and the
text source for HedgeFund. Because of the small sample size, all students first used a
diagram source and then a text source. If there is any consequential bias on the results
from solving a problem presented as a diagram first and a problem presented as text
second, the additional experience should favor text as source.

3 Results

3.1 Omissions and Additions

Both the sequence diagram and the text versions of each problem explicitly define a
set of actors (nodes in the diagram) and a set of interactions (edges). Thus, adequate
performance in each problem involves constructing a labeled graph to represent these

 Transforming Descriptions and Diagrams to Sketches in Information System Design 247

actors and interactions. The graph that represents all and only these explicitly defined
actors and relationships will be termed the canonical graph. The distance between
two graphs can be defined as the edits (additions or deletions) that will transform one
graph into another [10]. In this paper, cases of leaving out any explicitly mentioned
actors or communication links are termed omissions, and regarded as errors.

However, these design problems also offer opportunities to be creative, to go
beyond the problem information by envisioning additional actors and relationships,
additional system capabilities that might be beneficial, and by optimizing system
performance in other ways. Thus, additional nodes and edges not explicitly stipulated
in the problem statement are not necessarily errors. Rather they may reflect more or
less relevant elaborations to the conception of the problem or the solution. However,
irrelevant additions may be considered to be a form of error, because they have costs
(time, expense, security concerns) and do not bring benefits.

In addition to omissions and additions, the spatial layout of the produced sketch
is of interest: does the left-right organization of its components correspond to the
order of presentation in the text or the left-right organization of the sequence
diagram?

Fig. 3. Example student sketches for the FastStuff (left) and HedgeFund (right) problems

248 B. Tversky et al.

Fig. 4. Sketches generated for the FastStuff problem that are highly similar with respect to
Euclidean node positions and other surface characteristics (the two on the left), with a third
sketch (right) that is very dissimilar. In contrast, with respect to logical structure the sketch on
the right is almost identical to the sketch at top left.

To evaluate produced designs, we first analyzed the topological information
provided to students in the form of a sequence diagram or text for both problems. For
both problems, the text and diagram versions provide identical information about
actors (nodes) and their pattern of connectivity. We call the logical graph that can be
drawn for each of the problems, shown in Figures 1 and 2, the canonical graph of the
problem, because this standardized representation of the problem is analogous to
canonical data models used in systems integration (e. g. [11]).

We then developed a scheme for coding the student-produced sketches. Some
examples of student-produced sketches appear in Fig. 3. It is obvious that the
diagrams vary in their surface details, but without a formal analysis, it is less obvious
if they differ in their logical structure. In order to test the predictions, we need a
method to compare the student-produced sketches at the logical level. This requires
coding the sketches in terms of their graph topology.

As an illustration of the coding issues, we show three more sketches in Fig. 4. In
terms of surface structure, the two sketches on the left are very similar to each other.
In fact, they are the two closest sketches in the data set as measured by the Euclidean
distances between corresponding nodes in the sketches. For example, the position of
the node Van on one sketch is compared with the position of the node Van on the
other sketch. The sketches on the left are very dissimilar to the sketch on the right.
But by analyzing the logical connections between nodes (the edges in the terminology
of graph theory), we find that the two sketches on the left are quite dissimilar to each
other with respect to logical structure, and the sketch on the top left is very similar to
the sketch on the right.

However, analyzing the logical structure of the sketched diagrams involves more
than simply coding the student-produced diagrams for their graph topology.
Specifically, the use of diagrammatic conventions, such as sketching a logical bus to
represent a LAN, means that logical connectivity in the system and graph topology do
not have a one-to-one correspondence. Thus, we recoded various diagrammatic

 Transforming Descriptions and Diagrams to Sketches in Information System Design 249

.

a) Complete Graph b) Hub and Spokes c) Logical bus

Fig. 5. Alternative network representations topologically equivalent at the logical level

devices used to represent networks, such as logical buses, the Internet, and satellite
links, in terms of the network connectivity implied by the device and its constituents.
This was done in the following way. First, all examples of use of LANs and other
types of networks were identified. Two people coded these network types, and
discussed any discrepancies until consensus was achieved regarding the presence and
type of network connections in each student solution. The next step in the process was
automatic – the graph representation of the problem was transformed by software we
wrote into a standardized form. All devices directly connected to LANs were assumed
to be directly connected to each other, and the resulting connections were represented
in the logical form of the graph for each student solution.

For example, Fig. 5c shows the standard convention for representing a LAN. The
convention means that all nodes can communicate to each other, and so is logically
equivalent to the canonical form shown in Fig. 5a. To code this case, we formed a
new graph, G', in which the edges implied by the networks were added, and the
depicted node (if any) representing the network was deleted. We call G' the logical
form of the graph G, or the logical graph for short. In this way, we can compare the
logical connections in the diagrams produced for a particular problem, regardless of
the student’s choice of convention.

Several students created sketches whose logical graph exactly matched the
canonical graph. Most students, however, either omitted edges or added new edges
(sometimes as a result of adding new nodes). We analyzed the differences between
the students’ logical graphs and the canonical graph.

For the FastStuff problem, five graphs were produced that matched exactly the
canonical graph. One of these solutions is depicted in Fig. 3 (top left), the other four

Fig. 6. The four additional graphs that (along with the top left graph shown in Fig. 3) are
topologically identical to the canonical graph for the FastStuff question

250 B. Tversky et al.

Fig. 7. A graph that is logically almost identical to those in Fig. 6 – an edge has been added
between the GPS device and the customer

are shown in Fig. 6. Remarkably, these five matching graphs were all drawn in the
Diagram condition. Notice that very different styles are used to represent the same
underlying structure. The graphs exhibit different degrees of linearity, with the bottom
right graph mapping closely to the positions of the nodes shown in the problem
diagram, and the top right graph exhibiting a weaker correlation with the positions of
nodes in the problem diagram.

Fig. 7 shows a diagram that is almost identical to those in Fig. 6. An edge has been
added from the GPS system to the customer. This addition is a creative idea: the
customer could then know exactly where the truck was at all times. The student did
not consider a better alternative, that the information could be transmitted through the
truck’s network back to the website so that customers could track the truck’s location
without overloading the GPS system.

Fig. 8. Sketches that match the canonical graph for the HedgeFund problem

 Transforming Descriptions and Diagrams to Sketches in Information System Design 251

Fig. 9. Graphs that are one edit distant from the HedgeFund canonical graph. The graphs are
not identical to each other. There is an extra edge on the diagram on the left, and missing edges
in the two other diagrams.

For the HedgeFund problem, students produced three sketches whose logical
graphs matched the canonical graph; these are shown in Fig. 8. Again, these all were
drawn in the Diagram condition. Thus, for this problem too, no student with text as
source created a graph that matched the canonical graph. There were three figures that
differed by one edge from the canonical graph; these are shown in Fig. 9.

The sketch coding scheme just described allows comparisons of sketches produced
from diagram and text sources for omissions and additions. The number of omitted
edges (relative to the canonical graph) was analyzed in a replicated 2 x 2 Latin Square

Fig. 10. Number of omissions and additions by Modality and Problem. The dark bars represent
sketches drawn from diagrams, the light bars sketches drawn from text. The error bars show
standard error.

252 B. Tversky et al.

FastStuff: Mean Rank of X-position of Node

0

1

2
3

4

5

6

FSW OS IS Van NS WH

node

R
an

k FS-diag

FS-text

HedgeFund: Mean Rank of X-position of Node

0
1
2
3
4
5
6

CNBC HF

HPAS
HTS Citi

NYSE

node

R
an

k HF-diag

HF-text

Fig. 11. Rank X-axis positions of the objects of Figures 1 and 2 for the two problem scenarios

design, with Condition as the between-subjects factor. The within-subjects factors
were Problem (FastStuff or HedgeFund) and problem Format (diagram or text).
Means and standard errors for the four conditions are shown in Fig. 10.

There were fewer sketch errors with a diagram source than a text source. For
omissions, this was significant by a repeated-measures ANOVA, F(1,33) = 14.37,
p=.001. The effects of Problem and Condition were not significant, F(1,33) = 1.82,
p=.186 and F(1,33) = 0.27, p=.605. For additions, the differences due to Source were
not significant, F(1,33) = 2.64, p=.114, nor were the effects of Problem and
Condition, F(1,33) = 2.64, p=.656 and F(1,33) = 0.05, p=.816.

3.2 Reading Order Bias

Because there were no constraints on the positions of objects in the sketches, the left-
right organization of components was expected to correspond to the reading order of
the source text or the left-right organization of the source diagram. To test for reading
order bias, we first coded the horizontal locations of all nodes in the source diagrams
shown in Figures 1 and 2, and coded the locations in the problem texts of the same

 Transforming Descriptions and Diagrams to Sketches in Information System Design 253

objects, treating the text as a continuous string. Next, we coded the vertical and
horizontal locations of each node in the sketches produced by students. Then we
compared the positions of objects in each sketch to the reading order of the source,
whether diagram or text (Fig. 11).

As is evident from Fig. 11, there was a reading order bias. The X-axis of the figure
shows the rank-order left-right position of each node in the problem description and
the Y-axis shows the rank-order horizontal position of each node in the student’s
sketch for those students who depicted all six actors explicitly mentioned in the
problem text. For the FastStuff problem, when the source was a diagram the order of
nodes in the students’ sketches was exactly the same as the order in the source
diagram. By a permutation test [12], this ordering can be shown to deviate
significantly from random in the direction of the reading order, p=.001. When the
source was text, the correspondence between the order of nodes in the sketch and the
order of mention in the source text was nearly as strong, with only one pairwise
inversion of node order compared to the reading order. This too differs from random
ordering, p=.008.

The pattern was similar for the HedgeFund problem (Fig. 11), showing closer
correspondence of source ordering to sketch ordering when the source was a diagram
compared to when it was text. For the diagram presentation, the mean rank order of
nodes in the sketch differed from the diagram order by only a single inversion, which
again represents a significant degree of deviation from random ordering, p=.008. For
the text condition, the mean rank order differed from the order of nodes in the text by
three pair inversions. This correspondence with the reading order was only marginally
greater than chance, p=.068. In both conditions, the deviation of node order in the
design sketches differed from the source ordering mainly in the location of
“Citibank.” The source diagram located it to the right of HedgeFund, HTS (the
HedgeFund trading system) and HPAS (HedgeFund’s portfolio analysis system), but
students’ sketches locate it close to HedgeFund and to the left of HPAS. It could be
argued that this is a better placement, because the HTS and perhaps the HPAS node
need to communicate frequently with the New York Stock Exchange, the rightmost
node, while the customer (at the extreme left in the sequence diagram) needs to
communicate directly with Citibank.

4 Conclusions and Implications

Students in a class in information systems were presented two comparable design
tasks and asked to produce sketches of their solutions. One problem was presented in
the form of a diagram of a sequence of operations the system should perform. Another
problem was presented as a description of the identical sequence. Thus, students were
presented with the same information, but in different modes. We sought to investigate
if the mode of the problem source, diagram or text, would affect students’ designs.
The results showed that the mode of the source for the design problem, diagram or
sketch, in fact affected students’ design sketches in two major ways. First, a diagram
source led to designs that were more accurate in the sense of more closely matching
the specified problem structure. That is, students omitted fewer explicitly mentioned
actors and connections when designing from a diagram, probably because the source

254 B. Tversky et al.

diagram preprocesses that information for the student. There is some indication that
students also made fewer additions when the source was a diagram than when the
source was text. Additions, however, are not necessarily erroneous; they may be
creative and wise elaborations. Next, both the left-right spatial arrangement of actors
in the source diagram and the order of mention of actors in the source text affected the
left-right order of actors in students’ design sketches. However, that correspondence
was stronger when the source was a diagram than when the source was text. Together
the findings indicate that students’ design representations are more variable and more
flexible when created from text than when created from diagrams. There are more
mental steps to translate text to a design sketch than to translate a diagram to a design
sketch. Each mental step provides an opportunity for error but also an opportunity for
creativity. Thus, diagrammatic representations of design problems constrain design
solutions more than verbal representations of design problems.

Students’ design sketches are wonderfully variable, posing problems for data
analysis. What’s more, what is critical in system design is not the surface connections
of the diagrams but the underlying functional connections, which are logical and
topological, not Euclidean. In order to analyze and compare students’ sketches, we
developed a coding system that captured the underlying topology That coding system
allowed us to count and characterize omissions and additions. This coding system
should prove useful for many other cases of diagrams whose structure is topological,
including electrical systems, transportation systems, systems biology, and geography.

Diagrammatic representations of design problems provide a scaffold for designers
by selecting the relevant actors and specifying some of the relevant links. This
scaffold serves as training wheels for beginning designers, making sure that they stay
upright. However, the scaffold, like training wheels, also places limits and constraints.
Verbal descriptions of design problems are freer of constraints, and are likely to lead
to more flexible and creative performance in the long run. In any case, just as a
bicyclist must eventually abandon the training wheels, designers must eventually
become expert at translating diagrammatic and verbal representations of problems to
good designs. And, in fact, it seems likely that the problem representations with fewer
constraints will eventually lead to more flexible and creative designs. Ambiguity
allows invention (e. g., [13]), but successful invention requires expertise, skills and
knowledge.

Sketches are integral to design, of products, of buildings, and even of abstract
information systems. They are used to translate clients’ desires into initial designs,
they are used by designers to articulate and revise design ideas, and they are used to
present the design ideas as they progress for discussions with colleagues and clients.
In information design, clients often specify a series of temporal steps; from that, the
designer must configure a set of components. This is one of the challenges
novice designers face in order to become expert, a challenge examined here. For
systems designers, another challenge is appropriate use and interpretation of sketches
and diagrams that are manifest in space but that do not always support Euclidean
assumptions. The spatial configuration of components and connections, though highly
salient in a sketch, does not carry useful information about functional relations.
Rather, the information on functional relations is carried by the network connections
among the components. In typical information systems, those connections are dense;
expressing each and every one would quickly clutter a sketch, making it difficult to

 Transforming Descriptions and Diagrams to Sketches in Information System Design 255

follow. To cope, systems designers have developed conventions that summarize a set
of connections, notably, a logical bus to represent a LAN. A LAN is drawn as a single
line from which a set of components hang like clothes on a clothesline, but its
meaning is that all the hanging components are interconnected. Such sketches may
bear similarities to familiar route maps, but their interpretation is quite different. In a
LAN, to get from the left-most component to the right-most component, information
does not have to go through the middle components; it goes directly. Using this and
related conventions also causes problems for design students, because the conventions
cannot be approached with the Euclidean assumptions people usually bring to bear in
interpreting sketches. The difficulty this causes for design students was revealed in a
previous study [1]. The difficulty was echoed in the current study: for example, one
student had problems sketching a LAN connected to the Internet when working from
text, even though the student drew a correct network when working from a diagram.
Thus, working from diagrams can provide support for beginning designers, but also
can mask conceptual difficulties from instructors.

Designers of information systems must learn to resist Euclidean interpretations of
sketches and become fluent in the conventions. They also must become adept at going
back and forth between ideas and sketches, and between two kinds of sketches,
temporal and logical. Design, of products, buildings, and systems, is a cognitive
activity, and successful design entails honing cognitive skills. Some of these skills
require learning to benefit from different external representations, to translate among
them, and to use each to its advantage.

Acknowledgments. We are grateful for the support of the National Science
Foundation under grant IIS-0725223 as well as to NSF REC-0440103 and the
Stanford Regional Visualization and Analysis Center.

References

1. Nickerson, J.V., Corter, J.E., Tversky, B., Zahner, D., Rho, Y.: Diagrams as Tools in the
Design of Information Systems. In: Third International Conference on Design Computing
and Cognition (DCC 2008). LNCS, Springer, Berlin (2008)

2. Zhang, J., Norman, D.A.: A Representational Analysis of Numeration Systems.
Cognition 57, 271–295 (1995)

3. Hayes, J.R., Simon, H.A.: Psychological Differences Among Problem Isomorphs. In:
Castellan, N.J., Pisoni, D.B., Potts, G.R. (eds.) Cognitive Theory, vol. 2, pp. 21–41.
Erlbaum, Hillsdale (1977)

4. Taylor, H.A., Tversky, B.: Descriptions and Depictions of Environments. Memory and
Cognition 20, 483–496 (1992)

5. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley, Reading (2004)

6. Egenhofer, M., Franzosa, R.: Point-Set Topological Spatial Relations. International Journal
of Geographical Information Systems 5, 161–174 (1991)

7. Egenhofer, M., Mark, D.: Naive Geography. In: Frank, A., Kuhn, W. (eds.) COSIT 1995.
LNCS, vol. 988, pp. 1–15. Springer, Heidelberg (1995)

8. Stevens, A., Coupe, P.: Distortions in Judged Spatial Relations. Cognitive Psychology 10,
422–437 (1978)

256 B. Tversky et al.

9. Nickerson, J.V.: Teaching the Integration of Information Systems Technologies. IEEE
Transactions on Education 49, 1–7 (2006)

10. Sanfeliu, A., Fu, K.S.: A Distance Measure Between Attributed Relational Graphs for
Pattern Recognition. IEEE Trans. Systems, Man, and Cybernetics 13, 353–362 (1983)

11. Bergamaschi, S., Castano, S., Vincini, M.: Semantic Integration of Semistructured and
Structured Data Sources. SIGMOD Rec. 28, 54–59 (1999)

12. Rosander, A.C.: The Use of Inversions as a Test of Random Order. Journal of the
American Statistical Association 37, 352–358 (1942)

13. Suwa, M., Tversky, B.: What do Architects and Students Perceive in their Design
Sketches? A Protocol Analysis. Design Studies 18, 385–403 (1997)

