
G. Stapleton, J. Howse, and J. Lee (Eds.): Diagrams 2008, LNAI 5223, pp. 242–256, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Transforming Descriptions and Diagrams to Sketches in 
Information System Design  

Barbara Tversky1, James E. Corter1, Jeffrey V. Nickerson2,  
Doris Zahner2, and Yun Jin Rho1 

1 Teachers College, Columbia University 
2 Stevens Institute of Technology 

bt2158@columbia.edu, corter@tc.edu, jnickerson@stevens.edu,  
dzahner@stevens.edu, yjr2101@columbia.edu 

Abstract. Sketching is integral to information systems design. Designers need 
to become fluent in translating verbal descriptions of systems to a variety of 
kinds of sketches, notably sequential and logical, and to translate among the 
kinds. Here, we investigated these cognitive skills in design students, asking 
them to design a system configuration starting from either a sequential diagram 
or a sequential description.  Although the two source descriptions were 
logically equivalent, the diagram led to designs that corresponded more closely 
to the source description – that is, designs with fewer omissions of crucial 
components and links.  Text descriptions led to more variable and less accurate 
designs, most likely because they require more cognitive steps from problem 
representation to problem solution.  

Keywords: Diagrammatic reasoning, sketches, descriptions, problem representation, 
information systems design, topological diagrams. 

1   Introduction 

Sketching is critical to design, whether for design of the concrete, products or 
buildings, or for design of the abstract, information systems or corporate structures.  
In designing, formative sketches show the components, walls, for example, or 
computers, and their relations, spatial, functional, or temporal. In emphasizing the 
components and their relations, sketches abstract out information not needed in early 
stages of design such as the surface of the walls or the specifics of the servers. One 
common task of designers, especially when working with clients, is translating a 
verbal description of the requirements for a building or an information management 
task into a sketch. On other occasions, designers need to translate one kind of sketch 
into another, for example, transforming a plan into an elevation in the case of 
architecture, changing perspective, or transforming a temporal sketch of information 
transmission into a structural sketch of the components in the case of information 
design, changing time to space. For design of information systems, the focus here, the 
design task is made more challenging by the fact that it is the topology of the system 
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that is critical, not the Euclidean properties. The topology reflects the functional 
organization of the system.  This fact causes difficulty for novices, since sketches are 
inherently Euclidean, and beginning designers bring Euclidean assumptions and 
habits to the situation.   

Designers must master many types of external representations. Often a client will 
give the requirements to the designer verbally, and the designer will present the 
initial design as a sketch. More conversation occurs, followed by more sketches. 
Designers must be facile translators to and from diagrammatic representations. For 
the design of information systems, there are two general types of requirements, 
sequential and structural. Sequential requirements are step-by-step constraints, for 
example, the steps from a customer’s request to the shipment of an item or from 
placing an order with a supplier to the arrival of the goods.  Structural requirements 
fulfill a large set of sequential requirements, insuring that the right information gets 
to the right sources efficiently, and that the wrong information does not get to the 
wrong sources.   

Because information systems involve links that function near the speed of light, the 
Euclidean distance between components is usually not important. Instead, the number 
of connections between system components and the nature of those connections are 
critical. The components – computers, servers, and the like – and their connections or 
links represent the functional structure of the system. Systems are represented 
topologically; the components, called actors, as nodes and the connections or links as 
edges. The placement of the nodes is of little importance, but the patterns of edge 
connection are of high importance because they carry the functional structure.  
Because information systems can have many interconnections, diagrams of them have 
developed conventions to increase transparency by lowering clutter. One convention 
in particular, the logical bus, reduces the number of edges that need to be drawn, 
yielding a connectivity pattern that is often misinterpreted by novices. This 
convention is widely used to represent Local Area Networks (LANs). Within a LAN 
all system components are interconnected, however those interconnections are not 
explicitly shown, but rather indicated by a superordinate line connecting all of them, 
as shown in Fig. 5c.   

These abstractions are not always well understood by the users of technology. 
Nor are they well understood by novice designers [1]. Experts are expected to be 
able to understand the deep functional structure of a system, that is, its underlying 
topology, from many different forms of surface representations, including 
sequential diagrams, structural diagrams, natural language descriptions, and source 
code. They are also expected to be adept at going from one surface representation to 
another.   

What are the consequences of translating from one external representation to 
another? It is well known that the form of an external representation affects 
interpretation and inference from it; think of doing multiplication with Roman 
numerals (e. g., [2][3]). The present focus is a common task faced by designers, 
translating one form of external representation to another, notably text to sketch and 
diagram to sketch.   
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Here, students in a course in system design were asked to sketch the configuration 
of two systems. In one case, the source for the design of the system structure was a 
diagram of a sequence of operations the system should support. In the other case, the 
source for the design of the structure of a system was text, a verbal description of the 
same sequence of operations the system should support. Two questions are of interest: 
Which source leads to better design sketches, and are there qualitative differences 
between sketches produced from diagrams and sketches produced from text?  
Especially for novices, there should be advantages to producing a sketch from a 
diagram, that is, going from a sequential diagram to a structural design sketch. The 
source sequential diagram will have already abstracted all the critical components of 
the system. In addition, because the source sequential diagram shows one possible 
temporal route through the information system, it also shows at least part of the 
connectivity, the topological relations. A verbal description of the sequence requires 
the design student to abstract the components and the links. Novice designers are 
likely to miss some of them. Because verbal descriptions have fewer explicit 
components and spatial constraints, they are likely to lead to more variable design 
sketches.   

The source, whether diagram or text, specifies one sequence of operations to be 
accomplished by the system, but not all of them. Discussions with clients often begin 
that way; the client outlines the major task the system is expected to accomplish.  
That sequence does not completely specify the configuration. In order to construct a 
complete system, the designer must bring in other considerations deriving from 
general knowledge of information systems. For example, experienced designers might 
realize that certain groups of components should be grouped as a LAN, with restricted 
access. There are two ways that student designs could deviate from the minimal 
constraints of the source: they could omit nodes or edges, or they could add them.  
Omissions are always errors. Because the source problem does not completely 
stipulate the design, additions could be errors or they could be creative or wise design 
considerations.  

The source representation is also expected to affect the actual spatial layout of the 
design sketch, which is not specified by the source. Because systems design depends 
on connectivity, the locations of components in the Euclidean world are not relevant; 
consequently, the spatial locations of components in the sketches need not reflect their 
locations in the world. One default for determining sketch location in the absence of 
Euclidean constraints is reading order (e. g., [1][4]). Reading order predicts that the 
layout of components in sketches where the source is text should correspond to  
the order of mention in the text, and that the layout of components in sketches where 
the source is a sequence diagram should correspond to the left-right order of the 
sequence diagram.  

A challenge for research on sketches is to develop a coding system, because there 
is so much variability in spontaneous productions. Coding sketches is especially 
challenging for topological sketches, where it is desirable to extract the underlying 
logical structure from sketches that may differ in only superficial ways. Once this 
logical structure is abstracted, it becomes possible to establish the equivalence of 
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diagrams, and to separately measure the surface and the logical dissimilarity of 
diagrams. To these ends, we developed a technique for establishing logical 
equivalences as well as similarities between different systems sketches and diagrams. 
This involved the construction of a canonical graph, the nodes and links that 
correspond to the minimal solution that incorporates the source constraints. The 
student solutions can be compared to the canonical graph to assess omissions and 
additions.  

Since topological diagrams are used not only in information systems, but also in 
such diverse fields as electrical systems, transportation systems, systems biology, and 
geography (c.f. [6][7][8]), the coding system and insights into the production and 
understanding of information systems sketches will have broader implications.  

2   Methods 

The predictions were tested in a Master’s level course in the design of information 
systems. The thirty-six student participants had varying levels of expertise: some were 
relative newcomers to information systems, and others were working professionals 
with many years of system design experience. During the course, students solve a 
series of increasingly complex design problems and bring them in for critique every 
week [9]. 

Two problems were given to students in the present experiment.  Each student 
sketched the configuration design for two information systems, using a sequential 
diagram as the source for one problem and using a text description as the source for 
the other problem.  The problems were chosen to involve the same number of nodes 
(actors in UML terminology [5]), but to be in different domains. One problem, called 
“FastStuff,” asked students to design a system that delivers purchased products to the 
customer’s door. The other problem, called “HedgeFund,” asked students to design a 
new Internet presence for hedge fund investors (see Figures 1 and 2).  A source 
diagram and a source text were developed for each of the problems. These different 
 

 

Fig. 1. HedgeFund Diagram, given to half the participants, and HedgeFund text, given to the 
other half. The diagram is in the Unified Modeling Language (UML) sequence diagram  
format [5]. 
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Fig. 2. FastStuff Diagram, given to half the participants, and FastStuff text, given to the other 
half 

problem representations are only approximately equivalent. Complete equivalence 
would have resulted in either stilted text or unconventional diagrams, because the 
two types of representation have differing conventions. For example, sequence 
diagrams have an implied user on the left of the diagram that is never labeled, while 
text descriptions of design problems usually explicitly mention the user. Textual 
representations will often provide semantic information on the nature of an 
interaction (describing the type of message transmitted), but may not say explicitly 
where the interaction originates. However, this implicit information can usually be 
derived from the context. In contrast, sequence diagrams show all interactions 
explicitly, but do not give semantically meaningfully labels to the type of message 
transmitted. Rather than try to exactly equate the types of information provided by 
the two problem formats, we chose to use naturalistic problem descriptions that 
resemble those that students would encounter in a design course or in actual work 
settings. 

Half the students were given the text source for FastStuff and the diagram source 
for HedgeFund; the other half were given the diagram source for FastStuff and the 
text source for HedgeFund. Because of the small sample size, all students first used a 
diagram source and then a text source. If there is any consequential bias on the results 
from solving a problem presented as a diagram first and a problem presented as text 
second, the additional experience should favor text as source. 

3   Results  

3.1   Omissions and Additions 

Both the sequence diagram and the text versions of each problem explicitly define a 
set of actors (nodes in the diagram) and a set of interactions (edges). Thus, adequate 
performance in each problem involves constructing a labeled graph to represent these 
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actors and interactions. The graph that represents all and only these explicitly defined 
actors and relationships will be termed the canonical graph. The distance between 
two graphs can be defined as the edits (additions or deletions) that will transform one 
graph into another [10]. In this paper, cases of leaving out any explicitly mentioned 
actors or communication links are termed omissions, and regarded as errors.   

However, these design problems also offer opportunities to be creative, to go 
beyond the problem information by envisioning additional actors and relationships, 
additional system capabilities that might be beneficial, and by optimizing system 
performance in other ways. Thus, additional nodes and edges not explicitly stipulated 
in the problem statement are not necessarily errors. Rather they may reflect more or 
less relevant elaborations to the conception of the problem or the solution. However, 
irrelevant additions may be considered to be a form of error, because they have costs 
(time, expense, security concerns) and do not bring benefits.  

In addition to omissions and additions, the spatial layout of the produced sketch 
is of interest: does the left-right organization of its components correspond to the 
order of presentation in the text or the left-right organization of the sequence 
diagram?  

 
 

 

 

 
 

Fig. 3. Example student sketches for the FastStuff (left) and HedgeFund (right) problems 
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Fig. 4. Sketches generated for the FastStuff problem that are highly similar with respect to 
Euclidean node positions and other surface characteristics (the two on the left), with a third 
sketch (right) that is very dissimilar. In contrast, with respect to logical structure the sketch on 
the right is almost identical to the sketch at top left. 

To evaluate produced designs, we first analyzed the topological information 
provided to students in the form of a sequence diagram or text for both problems. For 
both problems, the text and diagram versions provide identical information about 
actors (nodes) and their pattern of connectivity. We call the logical graph that can be 
drawn for each of the problems, shown in Figures 1 and 2, the canonical graph of the 
problem, because this standardized representation of the problem is analogous to 
canonical data models used in systems integration (e. g. [11]).  

We then developed a scheme for coding the student-produced sketches. Some 
examples of student-produced sketches appear in Fig. 3. It is obvious that the 
diagrams vary in their surface details, but without a formal analysis, it is less obvious 
if they differ in their logical structure. In order to test the predictions, we need a 
method to compare the student-produced sketches at the logical level. This requires 
coding the sketches in terms of their graph topology. 

As an illustration of the coding issues, we show three more sketches in Fig. 4. In 
terms of surface structure, the two sketches on the left are very similar to each other.  
In fact, they are the two closest sketches in the data set as measured by the Euclidean 
distances between corresponding nodes in the sketches. For example, the position of 
the node Van on one sketch is compared with the position of the node Van on the 
other sketch. The sketches on the left are very dissimilar to the sketch on the right. 
But by analyzing the logical connections between nodes (the edges in the terminology 
of graph theory), we find that the two sketches on the left are quite dissimilar to each 
other with respect to logical structure, and the sketch on the top left is very similar to 
the sketch on the right.  

However, analyzing the logical structure of the sketched diagrams involves more 
than simply coding the student-produced diagrams for their graph topology.  
Specifically, the use of diagrammatic conventions, such as sketching a logical bus to 
represent a LAN, means that logical connectivity in the system and graph topology do 
not have a one-to-one correspondence. Thus, we recoded various diagrammatic 
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.   

 

a) Complete Graph b) Hub and Spokes c) Logical bus 

Fig. 5. Alternative network representations topologically equivalent at the logical level 

devices used to represent networks, such as logical buses, the Internet, and satellite 
links, in terms of the network connectivity implied by the device and its constituents. 
This was done in the following way. First, all examples of use of LANs and other 
types of networks were identified. Two people coded these network types, and 
discussed any discrepancies until consensus was achieved regarding the presence and 
type of network connections in each student solution. The next step in the process was 
automatic – the graph representation of the problem was transformed by software we 
wrote into a standardized form. All devices directly connected to LANs were assumed 
to be directly connected to each other, and the resulting connections were represented 
in the logical form of the graph for each student solution. 

For example, Fig. 5c shows the standard convention for representing a LAN. The 
convention means that all nodes can communicate to each other, and so is logically 
equivalent to the canonical form shown in Fig. 5a. To code this case, we formed a 
new graph, G', in which the edges implied by the networks were added, and the 
depicted node (if any) representing the network was deleted. We call G' the logical 
form of the graph G, or the logical graph for short. In this way, we can compare the 
logical connections in the diagrams produced for a particular problem, regardless of 
the student’s choice of convention. 

Several students created sketches whose logical graph exactly matched the 
canonical graph. Most students, however, either omitted edges or added new edges 
(sometimes as a result of adding new nodes).  We analyzed the differences between 
the students’ logical graphs and the canonical graph.  

For the FastStuff problem, five graphs were produced that matched exactly the 
canonical graph. One of these solutions is depicted in Fig. 3 (top left), the other four 
 

 

Fig. 6. The four additional graphs that (along with the top left graph shown in Fig. 3) are 
topologically identical to the canonical graph for the FastStuff question 
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Fig. 7. A graph that is logically almost identical to those in Fig. 6 – an edge has been added 
between the GPS device and the customer 

are shown in Fig. 6. Remarkably, these five matching graphs were all drawn in the 
Diagram condition. Notice that very different styles are used to represent the same 
underlying structure. The graphs exhibit different degrees of linearity, with the bottom 
right graph mapping closely to the positions of the nodes shown in the problem 
diagram, and the top right graph exhibiting a weaker correlation with the positions of 
nodes in the problem diagram.  

Fig. 7 shows a diagram that is almost identical to those in Fig. 6. An edge has been 
added from the GPS system to the customer. This addition is a creative idea: the 
customer could then know exactly where the truck was at all times. The student did 
not consider a better alternative, that the information could be transmitted through the 
truck’s network back to the website so that customers could track the truck’s location 
without overloading the GPS system.  

 

Fig. 8. Sketches that match the canonical graph for the HedgeFund problem 
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Fig. 9. Graphs that are one edit distant from the HedgeFund canonical graph. The graphs are 
not identical to each other. There is an extra edge on the diagram on the left, and missing edges 
in the two other diagrams.  

For the HedgeFund problem, students produced three sketches whose logical 
graphs matched the canonical graph; these are shown in Fig. 8. Again, these all were 
drawn in the Diagram condition. Thus, for this problem too, no student with text as 
source created a graph that matched the canonical graph. There were three figures that 
differed by one edge from the canonical graph; these are shown in Fig. 9. 

The sketch coding scheme just described allows comparisons of sketches produced 
from diagram and text sources for omissions and additions. The number of omitted 
edges (relative to the canonical graph) was analyzed in a replicated 2 x 2 Latin Square  

 

Fig. 10. Number of omissions and additions by Modality and Problem.  The dark bars represent 
sketches drawn from diagrams, the light bars sketches drawn from text. The error bars show 
standard error. 
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Fig. 11. Rank X-axis positions of the objects of Figures 1 and 2 for the two problem scenarios 

design, with Condition as the between-subjects factor.  The within-subjects factors 
were Problem (FastStuff or HedgeFund) and problem Format (diagram or text).  
Means and standard errors for the four conditions are shown in Fig. 10.  

There were fewer sketch errors with a diagram source than a text source. For 
omissions, this was significant by a repeated-measures ANOVA, F(1,33) = 14.37, 
p=.001.  The effects of Problem and Condition were not significant, F(1,33) = 1.82, 
p=.186 and F(1,33) = 0.27, p=.605.  For additions, the differences due to Source were 
not significant, F(1,33) = 2.64, p=.114, nor were the effects of Problem and 
Condition, F(1,33) = 2.64, p=.656 and F(1,33) = 0.05, p=.816. 

3.2   Reading Order Bias  

Because there were no constraints on the positions of objects in the sketches, the left-
right organization of components was expected to correspond to the reading order of 
the source text or the left-right organization of the source diagram.  To test for reading 
order bias, we first coded the horizontal locations of all nodes in the source diagrams 
shown in Figures 1 and 2, and coded the locations in the problem texts of the same 
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objects, treating the text as a continuous string. Next, we coded the vertical and 
horizontal locations of each node in the sketches produced by students. Then we 
compared the positions of objects in each sketch to the reading order of the source, 
whether diagram or text (Fig. 11).  

As is evident from Fig. 11, there was a reading order bias. The X-axis of the figure 
shows the rank-order left-right position of each node in the problem description and 
the Y-axis shows the rank-order horizontal position of each node in the student’s 
sketch for those students who depicted all six actors explicitly mentioned in the 
problem text. For the FastStuff problem, when the source was a diagram the order of 
nodes in the students’ sketches was exactly the same as the order in the source 
diagram.  By a permutation test [12], this ordering can be shown to deviate 
significantly from random in the direction of the reading order, p=.001. When the 
source was text, the correspondence between the order of nodes in the sketch and the 
order of mention in the source text was nearly as strong, with only one pairwise 
inversion of node order compared to the reading order.  This too differs from random 
ordering, p=.008. 

The pattern was similar for the HedgeFund problem (Fig. 11), showing closer 
correspondence of source ordering to sketch ordering when the source was a diagram 
compared to when it was text.  For the diagram presentation, the mean rank order of 
nodes in the sketch differed from the diagram order by only a single inversion, which 
again represents a significant degree of deviation from random ordering, p=.008.  For 
the text condition, the mean rank order differed from the order of nodes in the text by 
three pair inversions. This correspondence with the reading order was only marginally 
greater than chance, p=.068.  In both conditions, the deviation of node order in the 
design sketches differed from the source ordering mainly in the location of 
“Citibank.” The source diagram located it to the right of HedgeFund, HTS (the 
HedgeFund trading system) and HPAS (HedgeFund’s portfolio analysis system), but 
students’ sketches locate it close to HedgeFund and to the left of HPAS.  It could be 
argued that this is a better placement, because the HTS and perhaps the HPAS node 
need to communicate frequently with the New York Stock Exchange, the rightmost 
node, while the customer (at the extreme left in the sequence diagram) needs to 
communicate directly with Citibank.  

4   Conclusions and Implications 

Students in a class in information systems were presented two comparable design 
tasks and asked to produce sketches of their solutions. One problem was presented in 
the form of a diagram of a sequence of operations the system should perform. Another 
problem was presented as a description of the identical sequence. Thus, students were 
presented with the same information, but in different modes. We sought to investigate 
if the mode of the problem source, diagram or text, would affect students’ designs. 
The results showed that the mode of the source for the design problem, diagram or 
sketch, in fact affected students’ design sketches in two major ways. First, a diagram 
source led to designs that were more accurate in the sense of more closely matching 
the specified problem structure. That is, students omitted fewer explicitly mentioned 
actors and connections when designing from a diagram, probably because the source 
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diagram preprocesses that information for the student.  There is some indication that 
students also made fewer additions when the source was a diagram than when the 
source was text. Additions, however, are not necessarily erroneous; they may be 
creative and wise elaborations. Next, both the left-right spatial arrangement of actors 
in the source diagram and the order of mention of actors in the source text affected the 
left-right order of actors in students’ design sketches. However, that correspondence 
was stronger when the source was a diagram than when the source was text. Together 
the findings indicate that students’ design representations are more variable and more 
flexible when created from text than when created from diagrams. There are more 
mental steps to translate text to a design sketch than to translate a diagram to a design 
sketch.  Each mental step provides an opportunity for error but also an opportunity for 
creativity. Thus, diagrammatic representations of design problems constrain design 
solutions more than verbal representations of design problems. 

Students’ design sketches are wonderfully variable, posing problems for data 
analysis. What’s more, what is critical in system design is not the surface connections 
of the diagrams but the underlying functional connections, which are logical and 
topological, not Euclidean. In order to analyze and compare students’ sketches, we 
developed a coding system that captured the underlying topology That coding system 
allowed us to count and characterize omissions and additions. This coding system 
should prove useful for many other cases of diagrams whose structure is topological, 
including electrical systems, transportation systems, systems biology, and geography.  

Diagrammatic representations of design problems provide a scaffold for designers 
by selecting the relevant actors and specifying some of the relevant links. This 
scaffold serves as training wheels for beginning designers, making sure that they stay 
upright. However, the scaffold, like training wheels, also places limits and constraints. 
Verbal descriptions of design problems are freer of constraints, and are likely to lead 
to more flexible and creative performance in the long run. In any case, just as a 
bicyclist must eventually abandon the training wheels, designers must eventually 
become expert at translating diagrammatic and verbal representations of problems to 
good designs. And, in fact, it seems likely that the problem representations with fewer 
constraints will eventually lead to more flexible and creative designs. Ambiguity 
allows invention (e. g., [13]), but successful invention requires expertise, skills and 
knowledge. 

Sketches are integral to design, of products, of buildings, and even of abstract 
information systems. They are used to translate clients’ desires into initial designs, 
they are used by designers to articulate and revise design ideas, and they are used to 
present the design ideas as they progress for discussions with colleagues and clients. 
In information design, clients often specify a series of temporal steps; from that, the 
designer must configure a set of components.  This is one of the challenges  
novice designers face in order to become expert, a challenge examined here. For 
systems designers, another challenge is appropriate use and interpretation of sketches 
and diagrams that are manifest in space but that do not always support Euclidean 
assumptions. The spatial configuration of components and connections, though highly 
salient in a sketch, does not carry useful information about functional relations.  
Rather, the information on functional relations is carried by the network connections 
among the components. In typical information systems, those connections are dense; 
expressing each and every one would quickly clutter a sketch, making it difficult to 
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follow.  To cope, systems designers have developed conventions that summarize a set 
of connections, notably, a logical bus to represent a LAN. A LAN is drawn as a single 
line from which a set of components hang like clothes on a clothesline, but its 
meaning is that all the hanging components are interconnected.  Such sketches may 
bear similarities to familiar route maps, but their interpretation is quite different.  In a 
LAN, to get from the left-most component to the right-most component, information 
does not have to go through the middle components; it goes directly. Using this and 
related conventions also causes problems for design students, because the conventions 
cannot be approached with the Euclidean assumptions people usually bring to bear in 
interpreting sketches.  The difficulty this causes for design students was revealed in a 
previous study [1]. The difficulty was echoed in the current study: for example, one 
student had problems sketching a LAN connected to the Internet when working from 
text, even though the student drew a correct network when working from a diagram. 
Thus, working from diagrams can provide support for beginning designers, but also 
can mask conceptual difficulties from instructors.   

Designers of information systems must learn to resist Euclidean interpretations of 
sketches and become fluent in the conventions. They also must become adept at going 
back and forth between ideas and sketches, and between two kinds of sketches, 
temporal and logical. Design, of products, buildings, and systems, is a cognitive 
activity, and successful design entails honing cognitive skills. Some of these skills 
require learning to benefit from different external representations, to translate among 
them, and to use each to its advantage.  
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