
Bugs and Biases: Diagnosing Misconceptions in the Understanding of Diagrams 
  

James E. Corter (corter@tc.edu) a 

Yun Jin Rho (yjr2101@columbia.edu)a 

Doris Zahner (dzahner@stevens.edu) b  
Jeffrey V. Nickerson (jnickerson@stevens.edu) b 

Barbara Tversky (tversky@tc.edu) a 

 
 

a   Department of Human Development, Teachers College, Columbia University 
525 W. 120th St, New York, NY 10027 USA 

b  Howe School of Technology Management, Stevens Institute of Technology 
Castle Point on Hudson, Hoboken, NJ 07030 USA 

 
Abstract 

 
Errors in understanding diagrams come from inappropriate 
ways of interpreting the diagrams, ways that have a basis in 
the visual structure of the diagram. In the case of information 
systems diagrams, these misconceptions can be diagnosed 
through a Bayesian causal network, in which latent 
misconceptions are inferred from a simple test on paths in 
diagrams. The misconceptions are related to surface errors in 
a merely probabilistic manner.  Nonetheless, a model derived 
from one diagram can be used to make accurate predictions 
about errors on isomorphic diagrams. The technique can be 
used to assess misconceptions, including biases and bugs, and 
may be applied to many different problem domains. There are 
also pragmatic implications to this work: the domain of this 
application, that of a local area network, permeates 
information systems, and the diagnosis and correction of 
misconceptions will be helpful for those involved in 
information systems education, design, and trouble-shooting.  
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Introduction  
  
People rely on diagrams in all realms of life, maps to 

navigate, visual instructions to operate a camera, diagrams 
in education, science, business, design, and more.  One 
reason that diagrams are effective is that they map 
visuospatial aspects of the world to visuospatial 
characteristics of paper, readily allowing visuospatial 
inferences (Tversky, 2001). Although they appear simple, 
especially to experts, beneath the surface they depend on 
simplifications, spatial analogies, and social conventions 
that are usually learned implicitly.  Yet this learning does 
not always happen -- errors occur even for experts and even 
in the simplest of diagrams, networks of nodes and links 
(Corter, et al., 2008). Paradoxically, a possible source of 
error is exactly the visuospatial characteristics of the 
diagrams that make them effective.   

There are many inferences that can be made from even 
simple diagrams.  Consider Problem 1 in Figure 1. A variety 
of inferences are prompted by the objects in boxes, the lines 
among them, and their arrangement in space and along the 
lines.  You can infer that the diagram concerns several 
objects, Y, R, B, M, and C; you may notice that Y is above 
all the others and C below, that R is closer to B than M, and 
that B is between R and M.  If this were a map, say of 
buildings on a campus, it could also be used to infer routes; 
you could infer that the shortest path from Y to C would 
pass R, B, and M in that order. However, because this is a 
diagram of components of an information system, valid 
route inferences differ from those appropriate to maps.  One 
reason they are different is a special convention used in 
diagrams of information systems.  In information systems, 
there are often clusters of components such as computers 
that are completely interconnected through Local Area 
Networks, or LANs.  Drawing lines between all possible 
connections for even a small number of components would 
make a diagram unreadable.  Instead, the interconnected 
components are depicted as a set of objects dangling from a 
single line, RBM in Problem 1 and SAV in Problem 2.  
Thus, a shortest route from Y to C bypasses R and B, 
passing through only M, called a bridge node.  This yields 
the correct path YMC.  

 

 

 

 

        Problem 1           Problem 2 
 
Figure 1:  Two topologically equivalent networks, each 

depicting a set of completely connected nodes (YRBM or 
GVAS) connected by a bridge node (M or S) to another 
component (C or X).  
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Generating correct paths from such diagrams requires 
both declarative and procedural knowledge. The conceptual 
knowledge needed includes both general knowledge of 
paths in graphs and in space, and specific domain 
knowledge about the conventions for representing such 
systems with diagrams. For example, students must first 
understand that any path determines a fixed ordering of 
components along the path; next, they need to determine 
that correct ordering of components. To determine the 
correct orders, they need to understand the LAN convention, 
and to be able to differentiate LAN components from bridge 
devices that connect subsystems. When these crucial 
concepts are not mastered, students operate under 
misconceptions that cause systematic errors. 

The procedural knowledge required in the paths task 
includes strategies for avoiding execution errors. For 
example, in a task requiring participants to generate all 
possible shortest paths in a diagram, choice of an 
enumeration strategy can make a difference in performance.  
Also, biases in performance make some execution errors 
more likely than others.  Some of these biases arise from the 
fact that system diagrams representing the topology of a 
system are typically depicted embedded in the Euclidean 
plane. When people attempt to extract topological 
information from a diagram, they cannot avoid being 
influenced by irrelevant spatial aspects of the diagram, 
leading to predictable biases (Corter et al., 2008). 

This analysis suggests five kinds of misconceptions that 
might cause errors when participants are asked to generate 
all possible shortest paths of information flow for Network 
1 and Network 2. If participants extract the objects from the 
diagrams but not that the lines indicate that objects are 
connected in an order, we say that they show the no order 
misconception.  If they interpret lines as indicating order, 
but do not understand the LAN convention, that all 
components within a LAN are directly connected (e.g., they 
propose Y-R-B-M-C as a shortest path), then we say they 
show the LAN-as-path misconception. A companion aspect 
of interpreting the LAN convention is to understand that 
there is often a bridge node, an entry-way, into and out of a 
completely connected component. Participants may fail to 
notice a bridge node, say, omitting C-M-Y as a shortest 
path, which indicates the omit bridge error.  Conversely, a 
natural visual cue to an entrance is an extreme position, at 
an edge, as for nodes Y and C in Network 1. If participants 
misinterpret extreme positions as bridge nodes, for example 
proposing Y-R-B as a shortest path, then they show the 
commit bridge error.  Finally, our previous research (Corter 
et al., 2008) has shown that participants often read and 
generate paths in left-right reading order.  Thus, they may 
fail to generate all shortest paths, most frequently by 
omitting reverse-reading-order paths, demonstrating a 
reading order bias. A relatively rare misconception leading 
to a reading-order bias is to fail to understand that one must 
list backward paths as well as forward paths. 

To summarize, we have identified five important 
misconceptions, execution errors, and biases in the paths 
task: 
B1. no order misconception: S fails to understand that paths 

are ordered (e. g., commits CYB).  
B2. LAN-as-path misconception: S believes that a path 

through a LAN visits intervening nodes in sequence, like 
a physical path (e.g., commits YRBMC) 

B3. omit bridge misconception/error:  S fails to recognize or 
list a true bridge node (e.g., commits BC or omits BMC) 

B4. commit bridge misconception/error: S infers a 
nonexistent bridge node, or selectively commits the 
LAN-as-path error (e.g., commits YRB)  

B5. reading-order misconception/bias: S lists only forward 
paths (misconception); or omits backwards paths more 
often (bias) 

Knowing which of these errors occur consistently within 
and across participants is crucial to understanding how 
people interpret diagrams and consequently how to design 
and teach them. However, many errors are ambiguous with 
respect to cause. Omitting CMY is an example; it could 
occur from ignoring a bridge node or from the LAN 
misconception or from a tendency to omit backwards paths. 
Furthermore, the effects of misconceptions on procedural 
skills (i.e., the appearance of “bugs”) are often highly 
variable, appearing only probabilistically (vanLehn, 1990). 
For this reason, Bayesian networks have been proposed for 
the diagnosis of specific bugs in procedural skills (Lee, 
2003; Lee & Corter 2009).   Bayesian networks (e.g., Pearl, 
1988; Jensen, 1996; Korb & Nicholson, 2004) are an ideal 
tool for combining evidence from probabilistic indicators of 
latent traits or states, specifically for identifying signal (e.g., 
specific misconceptions) in noise (e.g., execution errors or 
“slips”).  The Bayesian approach also seems especially 
promising for diagnosing biases in performance, which we 
define as systematic, stochastically predictable execution 
errors. More generally, Bayesian networks have been 
successfully applied to assess specific knowledge 
components or subskills in educational domains (e.g., 
Beland & Mislevy, 1996; Conati et al., 2002; Pardos et al., 
2007; vanLehn & Martin, 1998; Williamson et al., 2006).   

Here, we describe a Bayesian method for diagnosing 
misconceptions and biases in reasoning about paths in 
diagrams. Our intent in developing this method is both to 
identify specific difficulties in individual students, allowing 
specific correctives, and to identify general difficulties that 
may be overcome by better design or explicit instruction.  
Both the methods and the errors have broad implications, 
because such diagrams are widely used.  

 
METHOD 

 
Materials. A test was designed to measure the ability to 
reason about paths in diagrams.  The two diagrams in Figure 
1 were presented, and participants were asked to check 
which of 19 proposed paths were valid shortest paths Each 
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test question was constructed by selecting 10 correct 
minimal paths, and 9 potential commission errors actually 
observed in a previous study using this problem in an open-
ended task where participants were instructed to list all 
shortest paths (Corter et al. 2008).  These 19 correct and 
incorrect paths were used as answer alternatives. Thus, for 
each depicted network, participants could make errors of 
omission (by omitting correct paths listed as answer 
alternatives) or commission (by checking incorrect paths 
listed as answer alternatives).  
 
Participants.  Participants (N=195) were solicited via a 
posting on a public website asking for participants to: 
“Solve problems related to diagrams (knowledge of 
information systems is helpful).” They were compensated 
with a nominal stipend.  
 
Modeling.   We constructed a Bayesian network for each 
diagram, designed to diagnose a set of specific 
misconceptions we had identified by analysis of previous 
data.  This initial network incorporates a set of hypotheses 
about the skills needed for making inferences from 
diagrams, about potential misconceptions that a participant 
might have, and about the surface errors that these 
misconceptions might cause.  

For each type of misconception identified above 
(including execution errors and biases) that a participant 
might exhibit, the set of observed omission and commission 
errors that provide positive evidence was coded.  Again, the 
misconceptions are: 

B1. no order misconception 
B2. LAN-as-path misconception 
B3. omit bridge misconception/error 
B4. commit bridge misconception/error  
B5. reading-order misconception/bias 
The model was trained on data from participants who 

completed the two test questions concerning shortest paths 
in two isomorphic diagrams (Figure 1).  Participants who 
checked only a single path in a question were regarded as 
uncooperative respondents who participated only nominally 
in order to earn the stipend, or as having misunderstood the 
question.  Thus, data from these participants were 
eliminated, leaving 128 valid observations. Each 
participant’s data vector for each of the two questions was 
entered as evidence into a Bayesian network, and the 
diagnosed misconceptions from the two questions were 
compared - a form of test-retest reliability.  Inconsistent or 
unreliable diagnosis of several of our hypothesized 
misconceptions was taken as evidence that the 
conceptual/cognitive model was wrong.  These unreliably 
diagnosed misconceptions were eliminated from the model, 
which was re-estimated.   

 
 
 

Defining and Training the Networks 
 
For each problem, a 2-layer Bayesian network was 

defined, with five parent nodes representing the 
hypothesized bugs, and 19 leaves representing the possible 
omission or commission errors. The Bayesian networks for 
the two problems were not identical, even though the two 
presented diagrams were topologically equivalent, because 
the definition of “backward” path differs for the two 
diagrams, so different links were specified from specific 
omission or commission errors to the node for reading order 
bias for the two networks.  The full Bayesian network 
defined for Problem 1 is shown in Figure 2. 

Algorithmically, our approach relies on standard belief 
propagation techniques (Pearl 1988). The HUGIN system 
(Anderson et al., 1989) was used to instantiate the Bayesian 
network and perform these computations. The network 
parameters (the simple and conditional probabilities relating 
misconceptions and errors) were set to reasonable initial 
values, then expectation-maximization (EM) learning was 
applied. The trained networks were used to diagnosis the 
presence of the hypothesized latent misconceptions and 
biases for each participant. 

The observed proportions of participants who made 
specific omission and commission errors on the two 

network problems are shown in Table 1. There were more 
omission errors than commission errors.  The most frequent 
commission errors were YRB, YRBMC and MBR for 
Problem 1 and GVA, GVASX, and SAV for Problem 2, 
each committed by approximately 35-40% of participants. 
CMRY and XSVG were committed by 11% and 17% of 
participants, respectively. 

Training of the Bayesian networks resulted in estimated 
posterior probabilities for the diagnosed misconceptions 
(Table 2) that differed radically from the 50% base rates 
used as priors. The most common misconception was B2 
(the LAN-as-path error), while misconception B1 (no-order)  
was quite rare.   For misconceptions B1-B4, similar mean 
posterior probabilities were obtained using Problems 1 and 
2, demonstrating good reliability for estimation of these 
misconceptions. However, the estimated proportions of 
participants showing the reading-order bias (B5) did differ 
between the problems. 

 
 

Figure 2: The Bayesian network for Problem 1. 
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Table 1:  Proportions of participants making specific omission and commission errors for the two problems. 
 

 
Problem 1 Omissions: BR CM RM BY YB CMY MR YM RB MC YMC BMC 

  0.07 0.05 0.41 0.38 0.36 0.48 0.42 0.41 0.05 0.08 0.53 0.29 
 commissions: BMY YMBR YBC CY YRB CMRY YRBMC MBR BC    
  0.03 0.04 0.05 0.06 0.36 0.11 0.38 0.41 0.05    
Problem 2 Omissions: AV XS VS AG GA XSG SV GS VA SX GSX ASX 

  0.02 0.09 0.36 0.29 0.29 0.45 0.34 0.34 0.06 0.06 0.45 0.30 
 commissions: ASG GSAV GAX XG GVA XSVG GVASX SAV AX    
  0.03 0.05 0.05 0.06 0.38 0.17 0.34 0.37 0.06    

 
 Table 2: Estimated base rates of the misconceptions 

after EM learning 

 
The row of Table 3 labeled “5-bug” shows the test-retest 

reliabilities of the five latent variables (the posterior 
probabilities for the five misconceptions), measured as the 
correlations of the posterior probabilities of the 
misconceptions between the two problems, P1 and P2.  All 
misconceptions are being diagnosed reliably (p<.05), 
although the correlations for B5 are lower.   
 

Table 3: Correlations of posterior probabilities of the 
latent misconceptions across the two isomorphic problems. 

 
    The use of Bayesian networks or any other diagnostic 
testing method cannot be fairly evaluated if the cognitive 
model of the domain is incorrect.  We had hypothesized the 
existence of misconceptions and biases B1-B5 based in part 
on a theoretical analysis of the knowledge and skills 
required in the domain, but also based on evidence from 
previous studies in our lab (e.g., Corter et al., 2008). 
Because of inconsistent evidence for misconceptions B3 and 
B4 in previous analyses, we compared the 5-bug model with 
two more parsimonious models, eliminating first B4, then 
B3 from the Bayesian network for each problem, and 
retraining the more compact networks on the same data.  
The rows of Table 3 labeled “4-bug” and “3-bug” shows 
that the remaining misconceptions have good test-retest 
reliability in the reduced models too (though less so for B5).   

The relative fit of these three models can be compared 
using model comparison statistics such as AIC or BIC.  The 
5-bug, 4-bug, and 3-bug models are compared in Table 4. In 
this table AIC is defined as LL - k, and BIC as LL - k/2 
log(n), thus larger values are desirable. By both criteria, the 
5-bug model provides the best fit, even adjusting for the 
additional number of parameters. 

 
Table 4: Model-fit statistics for the three models. 

 
network problem  AIC BIC LL 
5-bug P1  -765.53 -889.60 -678.53 

 P2  -700.53 -833.15 -607.53 
4-bug P1  -810.37 -895.93 -750.37 

 P2  -747.13 -838.40 -683.13 
3-bug P1  -834.00 -899.60 -788.00 

 P2  -811.03 -880.91 -762.03 
 

One way to assess the validity of the misconception 
diagnoses is to relate them to external criteria.  A criterion 
available here was performance on a third question 
administered to participants, a problem that also involved 
path inferences.  This problem asked participants to identify 
the shortest path (as measured by topological distance) 
between two nodes in a graph.  The question was designed 
so that one alternative answer gave a path between the two 
nodes that was shortest in terms of Euclidean distance (the 
most compelling incorrect “distractor” answer) and another 
was shortest in terms of topological distance (the correct 
answer). The posterior probabilities for misconception B2 
(but not for the other misconceptions) were negatively and 
significantly correlated with performance on this related 
problem.  

We also investigated multiple diagnoses: in the 5-bug 
model only 15 participants were diagnosed with more than 
one type of misconception, and the most common patterns 
were the combination of B2 with B3 (n=8), followed by B1 
with B4 (n=4).   

Table 5 shows the intercorrelations of these 5 latent 
misconceptions, separately by problem. For both problems, 
misconception B1 has a moderate positive correlation with 

network problem B1 B2 B3 B4 B5 
5-bug P1 0.08 0.35 0.25 0.20 0.13 

 P2 0.09 0.28 0.24 0.25 0.08 
4-bug P1 0.04 0.35 0.24  0.13 

 P2 0.10 0.30 0.24  0.06 
3-bug P1 0.06 0.36    0.14 

 P2 0.06 0.29    0.06 

network  B1 B2 B3 B4 B5 
5-bug .83 .80 .83 .79 .42 
4-bug .37 .75 .84  .35 
3-bug .82 .82   .34 
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B4, and B3 with B5.  However, there is a moderate negative 
correlation of B1 with B2, and of B3 with B4, which may 
indicate  problems distinguishing these misconceptions. 

 
Table 5: Intercorrelations between diagnosed 

misconceptions in the two problems using the 5-bug 
network  (above the diagonal = Problem 1; below the 

diagonal = Problem 2). 
 

 Bug 1 Bug 2 Bug 3 Bug 4 Bug 5 

Bug 1 -- -.19 .06 .21 .00 

Bug 2 -.12 -- .10 -.01 -.01 

Bug 3 .05. .10 -- -.17 .15 

Bug 4 .20 -.05 -.20 -- -.01 

Bug 5 -.08 .00 .13 .10 -- 

 
     We performed k-means clustering to shed light on the 
distributions and intercorrelation of these misconceptions 
and biases. For each participant, the input to the cluster 
analysis was the six posterior probabilities for the five 
misconceptions measured across the two isomorphic 
problems. Table 6 shows the final cluster centroids for the 
resulting 2-cluster solution.   Cluster 1 (N=91) consists of 
those participants diagnosed with a moderately high 
posterior probability of having misconception B2, the LAN-
as-path error, and B4, the infer-bridge error.  Note that B4 
can be viewed as a location-specific “specialization” of B2, 
in the sense that it has the same symptom, which is 
interpolation of a node into a path within a LAN.  Cluster 2 
(N=37) consists of participants diagnosed with a relatively 
high posterior probability of having all the misconceptions 
and biases, but especially with B3 and B2, the 
misconceptions with higher base rates.   

Discussion  
When given the task of generating all the shortest paths in 

a diagrammed information system, participants made many 
errors.  Knowing the origins of the errors is important for 
both instruction and diagram design.  Determining the 
origins of the errors is not straightforward, because many 
are ambiguous with respect to cause.   

Here we followed an abductive method, based on 
Bayesian inference, for diagnosing the misconceptions 
underlying path errors. Specific misconceptions were 
hypothesized to explain individual surface errors and used 
to construct causal models represented as Bayesian 
networks. We select among members of a set of nested 
candidate models using model-fit statistics. This is in effect 
a form of structure learning.  The model-fit statistics BIC 
and AIC supported the usefulness of all five bugs in 
affecting performance in the paths task. However, the 
advantage of the 5-bug solution over the 4- and 3-bug 
solutions is not large. By using two isomorphic diagrams in 
the test, the estimated models from two diagrams could be 
compared to assess reliability of the diagnosis. 

The misconceptions that were reliably diagnosed in all 
models suggest the following conclusions about 
understanding and performance in the paths task. A small 
group of participants did not order objects correctly; they 
appeared to regard the diagrams as sets of objects with no 
relations among them, that is, categorically.  In other words, 
they were able to make inferences from the nodes, but were 
unable to make inferences from the paths between the 
nodes. A larger group of participants failed to understand 
the LAN straight-line convention in which sets of 
components are completely connected.  That group seemed 
to assume that any line could order objects.  Some 
participants failed to make correct inferences regarding the 
role of bridge nodes in the diagrams. Another group 
processed the diagram in reading order, left to right, and 
failed to generate certain paths, mostly backwards ones.   

All of these errors seem to arise from “reading” the 
diagrams incorrectly. Participants who failed to correctly 
order the objects seemed able to “read” or understand the 
nodes, but not the paths.  Most participants, however, did 
understand both the nodes and the paths.  Many did not 
understand that all components connected on a straight line 
are interconnected so that a shortest path need “visit” only 
the endpoints. This misconception is encouraged by the 
straight line that connects the components.  Participants who 
omitted some reverse paths seemed to be making inferences 
from the network in reading order, but had no visual 
indication or feedback for each step.   

This last finding is analogous to studies that show that 
mathematical formulae are also processed in a sequential 
manner (Landy  & Goldstone, 2007).  More generally, this 
work may be related to studies that claim that people infer 
structure from data, and then use those structures as priors 
(Kemp & Tenenbaum, 2008). In our study, it is possible that 
each participant is choosing a prior model, a structure such 
as a sequential chain, to understand the diagram and make 
inferences. If the structure is incorrect (a misconception), 
then the participant makes errors. In this way of thinking, 
our model seeks to classify each participant by discovering 
this unobservable structure.  

The findings have general implications for education and 
design, since networks are so widely used to represent 
information. Although the mapping of elements and 
relations in the world to elements and relations in diagrams 
facilitates reasoning and inference by providing visuospatial 
cues, visuospatial cues or their absence can also have 
deleterious effects on people’s interpretations of diagrams. 

Once the origins of errors are known, interventions can be 
designed to reduce them. We have shown that at least some 
of the misconceptions defined above can be corrected 
through a simple educational intervention (Corter et al., 
2008). By looking at multiple types of diagrams, it might be 
possible to diagnose misconceptions that apply across 
domains. For example, sequential biases have been shown 
in a variety of domains (e. g., Taylor & Tversky, 1992). It 
remains to be seen if simple interventions in one domain 
will yield returns across other domains.  
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