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The hierarchical rater model (HRM) recognizes the hierarchical structure of data
that arises when raters score constructed response items. In this approach, raters’
scores are not viewed as being direct indicators of examinee proficiency, but rather
as indicators of essay quality; the (latent categorical) quality of an examinee’s es-
say in turn serves as an indicator of the examinee’s proficiency, thus giving a hi-
erarchical structure. Here it is shown that a latent class model motivated by signal
detection theory (SDT) is a natural candidate for the first level of the HRM, the rater
model. The latent class SDT model provides measures of rater precision and various
rater effects, above and beyond simply severity or leniency. The HRM-SDT model
is applied to data from a large-scale assessment and is shown to provide a useful
summary of various aspects of the raters’ performance.

Constructed response (CR) items, such as essay questions, are widely used in
large-scale assessments, such as the SAT R©, which includes one essay, and the
GRE R©, which includes two essays. CR items are also used in various national and
international assessments, such as the National Assessment of Educational Progress
(NAEP), Trends in International Mathematics and Science Study (TIMSS), and the
Programme for International Student Assessment (PISA). CR items add an extra
layer of complexity to the scoring process, because they require raters to score them,
in contrast to multiple choice items, responses to which can simply be machine
scored as right or wrong.

A typical way to deal with rater scores for CR items is to use an item response
theory (IRT) model, such as the generalized partial credit model (Muraki, 1992) or
the Rasch model (Linacre, 1989). For example, the generalized partial credit model
is used for CR items in NAEP, whereas (a version of) the Rasch model is used for
PISA. In these approaches, rater scores are used as direct indicators of examinee pro-
ficiency. A basic problem with this approach, however, is that it follows that more
precise measurement of an examinee’s proficiency can be obtained simply by using
more raters, instead of by giving the examinee more items! This was shown formally
by Mariano (2002) in terms of accumulated Fisher information, and was also noted
by Patz (1996) and Patz, Junker, Johnson, and Mariano (2002), “as the number of
raters per item increases, IRT facets models appear to give infinitely precise mea-
surement of the examinee’s latent proficiency θi” (p. 348).
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The above problem forces one to recognize that raters do not really provide direct
information about an examinee’s proficiency, but rather provide information about
the quality of an essay (or other CR) produced by the examinee. The (categorical)
quality of the essay, in turn, provides information about the examinee’s proficiency.
Thus, there is a hierarchical structure to the data: in the first level, the raters’ scores
are ordinal indicators of the “true” category that an essay belongs to, whereas in the
second level, the latent categories are ordinal indicators of examinees’ proficiency. A
hierarchical rater model (HRM), introduced by Patz (Patz, 1996; Patz et al., 2002),
explicitly recognizes the hierarchical structure of the data; the HRM uses a signal
detection model for the first level of the model (the rater model) and an IRT model
for the second level (the item model).

The problem noted above does not arise with the HRM because obtaining more
raters provides more information about which category a particular essay belongs
to, and not directly about examinee proficiency, and so one cannot obtain infinitely
precise estimates of proficiency simply by using more raters. In fact, Mariano (2002;
also see Patz et al., 2002) showed that, for the HRM, the standard errors of the pro-
ficiency estimates could never be smaller than those obtained by using the true cat-
egories in the Level 2 IRT model (i.e., for an infinite number of raters or for perfect
detection).

There are, however, some limitations to the particular model that was used in
Level 1 of the HRM. For example, Patz et al. (2002) noted that, when rater dis-
crimination was high, there were problems obtaining estimates of the rater severity
parameter (the severity parameter indicates whether a rater is strict or lenient). An-
other limitation is that the model only allows for rater effects in terms of severity
or leniency, whereas other rater effects often appear in real-world data. These prob-
lems do not arise, however, if a model based on an extension of traditional signal
detection theory (SDT) to situations involving the detection of latent classes is used
(e.g., DeCarlo, 2002, 2005, 2008a). Here it is shown that the approach offers advan-
tages when used for the first level of the HRM, giving what will be referred to as an
HRM-SDT model. For example, the latent class SDT model can deal with various
rater effects that appear in real-world data, beyond simply severity or leniency, as
shown below. The model is also straightforward to implement in standard software,
given that the latent class SDT model is simply a generalized linear model with a la-
tent categorical predictor. The approach also brings the well-established framework
of SDT, as widely used in psychology, to the rater model of the HRM. The HRM-
SDT is compared, in an analysis of a large-scale language assessment, to the original
version of the HRM used by Patz et al. (2002) and others (e.g., Mariano & Junker,
2007). A partly Bayesian approach to estimation, posterior mode estimation (PME),
is also discussed.

The Hierarchical Rater Model

The HRM (Patz, 1996; Patz et al., 2002) recognizes that the use of raters in
CR scoring leads to a hierarchical data structure. In particular, in the HRM, the
scores provided by raters are not direct indicators of examinee ability, as in the
Rasch model or other IRT approaches to rater scoring, but rather are indicators
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Figure 1. A representation of the HRM of Patz (1996) and Patz
et al. (2002).

of the true or “ideal” category that each essay belongs to, where the true cat-
egory is defined by the scoring rubric. For example, raters are trained to score
the SAT using categories of 1 = very little or no mastery, 2 = little mas-
tery, 3 = developing mastery, 4 = adequate mastery, 5 = reasonably consis-
tent mastery, and 6 = clear and consistent mastery (a score of zero is used for
essays not written on the essay assignment); detailed descriptions of each cat-
egory are also provided (e.g., at http://professionals.collegeboard.com/testing/sat-
reasoning/scores/essay/guide). Of course, one would not extensively train raters with
a particular scoring rubric if one did not believe to some extent that there are in fact
true categories of little mastery, adequate mastery, and so on.1

For a given essay, however, the true category is not directly observed or known,
that is, the true category is latent; the latent categorical variable is denoted here as
η. It follows that the raters’ task is one of signal detection: given a particular essay,
a rater’s task is to determine (detect) which category the essay belongs to. Thus, a
signal detection model is a natural candidate for the rater model in the first level of
the HRM. A signal detection approach recognizes that raters’ judgments are fallible
indicators of the true category. The approach also provides a measure of a rater’s
ability to detect the true categories and recognizes that raters often have various
response tendencies, as discussed below.

In the second level of the HRM, the latent categories serve as ordinal indicators
of examinee proficiency, via an IRT model (note that the situation differs from the
usual IRT model in that the indicators are latent rather than observed). Thus, an essay
produced by an examinee is viewed as belonging to one of the categories defined by
the scoring rubric, and the (true) category that the essay belongs to is in turn an
indicator of the examinee’s proficiency. In the notation used here, the observed rater
scores Y are indicators of the true essay category η, and the true category η in turn is
an indicator of examinee proficiency θ.

Figure 1 shows a representation of the HRM for the situation where each examinee
responds to two items, say essays, with each essay scored by three raters, for a total
of six raters. The rater scores are observed ordinal responses (e.g., a 1 to 6 score),
which are shown in Figure 1 as Yjl for the jth rater and lth item. The raters attempt
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to detect the true latent category for each essay, indicated by the latent categorical
variable η1 for the first item and η2 for the second item. Note that the arrows from
ηl to Yjl are curved to indicate that the relation is nonlinear, and in particular the
probability of Yjl is connected to ηl via a nonlinear function (see below). The basic
Level 1 (signal detection) parameters are τjl and φjl, as shown in Figure 1, which are
rater precision and rater severity parameters, respectively.

In the second level of the HRM, the true essay category, ηl, serves as an ordinal
indicator of an examinee’s proficiency θ. The arrows are again curved to indicate that
the latent categorical variables ηl (i.e., their probability) have a nonlinear relation to
examinees’ proficiency θ, via an IRT model (the generalized partial credit model is
used here; other IRT models can also be used). The Level 2 parameters are al and
blm, which are the usual discrimination and category step (transition) parameters,
respectively.

As noted above, the HRM addresses the problem that arises when an IRT approach
to rater scoring is used, which is that increasing the number of raters gives increas-
ingly precise estimates of proficiency. In particular, as shown in Figure 1, obtaining
more raters provides more information about ηl, and not directly about θ, whereas in
an IRT approach obtaining more raters provides more information directly about θ.
Note that this problem arises even if the test includes only one CR item.

When a test includes more than one CR item, another problem arises, as discussed
by Patz et al. (2002). As shown in Figure 1, the first three raters are nested in the first
item, whereas the second three raters are nested in the second item. If one simply
uses the scores from the six raters in a model such as the Facets model (Linacre,
1989), which is commonly used for rater data, then the fact that raters are nested
within items is ignored. The nesting means that the scores from Raters 1, 2, and 3,
for example, are correlated in part because the three raters all score the same item
(the first item), and similarly for Raters 4, 5, and 6, who all score the second item.
Ignoring the correlation that arises due to nesting will give estimates of the standard
errors of proficiency that are biased downward, as was noted by Patz et al. (2002)
and others (e.g., Donoghue & Hombo, 2000; Wilson & Hoskens, 2001). The HRM,
on the other hand, recognizes the nesting and corrects for the downward bias. The
next sections introduce the components of the HRM in more detail.

Level 1: The Rater Model of Patz et al. (2002)

The signal detection-like model used by Patz et al. (2002; also see Mariano &
Junker, 2007) for the first level of the HRM can be written as

p(Y jl = k|ηl = η) ∝ exp

{
− 1

2ψ2
jl

[k − (η − φ jl)]
2

}
, (1)

where Yjl is the response of jth rater to the lth item, with the response being a dis-
crete score k with K categories (the number of response categories is assumed to be
the same across different raters and items, as is often the case in practice, although
this need not be the case), ηl is a latent categorical variable for the lth item, ψ2

jl is
a variance parameter for rater j (and item l) and φjl is a rater severity parameter
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(i.e., higher values indicate a more severe rater). Equation 1 is a signal detection-like
model where the probabilities for each response category are approximately nor-
mally distributed. As noted by Patz et al. (2002), ψ2

jl is a measure of a rater’s lack
of reliability; its inverse, τjl = 1/(2ψ2

jl), provides a measure of rater precision. The
other rater parameter, φjl, is a severity parameter that indicates whether a rater is se-
vere (positive values) or lenient (negative values), in that he or she tends to give low
or high scores, respectively.

A problem with (1) that was recognized by Patz et al. (2002) is that the “most
reliable raters” (i.e., those with small values of ψ jl) tend to have the “least-well-
estimated rater bias parameters” (p. 366). This occurs because, when ψ jl is relatively
small, the likelihood as a function of φjl is nearly constant over the range (–.5, .5) and
is close to zero outside of that range (because the probability of a score in a response
category other than the true category is near zero). Because the likelihood for φjl is
nearly uniform from –.5 to .5, it is difficult to determine a unique value for φjl in that
range. This was shown by Patz et al. (2002), in that there were problems determining
a unique value for φjl for two highly reliable raters (with estimates of ψ jl of .05 and
.06)2 because the posterior distribution of φjl was almost uniform.

Another limitation of (1) is that it cannot capture rater effects other than severity
or leniency. There are, however, various types of rater effects that appear in large-
scale assessments, such as central tendency or restriction of the range (e.g., Myford
& Wolfe, 2004), as discussed below. A latent class model based on the traditional
SDT model can easily deal with these types of effects.

Level 1: A Latent Class SDT Model of Rater Behavior

It has previously been suggested (DeCarlo, 2002, 2005) that psychological pro-
cesses involved in CR scoring can be usefully understood within the framework of
SDT (Green & Swets, 1988; Macmillan & Creelman, 2005; Wickens, 2002), which
has been widely and successfully used in psychology and medicine. The application
of SDT to CR scoring involves a latent class extension of SDT (DeCarlo, 2002); here
it is noted that the model provides a useful alternative to the Level 1 model used by
Patz et al. (2002).

CR scoring is conceptualized in SDT in terms of two basic aspects, namely
a rater’s perception of an essay’s quality and his or her use of decision criteria.
Figure 2 illustrates the basic ideas. Suppose that raters use responses of 1 to 4 to
detect four latent categories. A basic idea in SDT is that a rater’s decision is based
upon his or her perception, �, of the quality of an essay, where � is a latent con-
tinuous random variable. It is assumed that the perceptions are realizations from a
(location-family) probability distribution, such as the normal or logistic (for exam-
ples with other distributions, see DeCarlo, 1998). As shown in Figure 2, the distri-
bution of � has a different location for each of the latent categories, resulting in
four locations for four categories. Thus, when presented with an essay from the first
category, for example, the rater’s perception (�) of the quality of the essay is a real-
ization from the first probability distribution; for an essay from the second category,
the rater’s perception is a realization from the second probability distribution, and
so on.
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Figure 2. A representation of SDT, where raters make a 1 to
4 response to detect four stimuli (events).

The distances d between the perceptual distributions, shown in Figure 2, reflect
a rater’s ability to detect (discriminate) the latent categories, and so d provides a
measure of rater detection or rater precision, exactly as in traditional SDT. Note
that the approach is the same as that used by Clogg and Manning (1996) to define
nonparametric measures of reliability for latent class models; for additional discus-
sion and references, see DeCarlo (2002, 2005). Figure 2 also illustrates a simplify-
ing assumption, which is that the distance d between the perceptual distributions is
the same across categories, which was referred to as the equal distance model in
DeCarlo (2002). One can also allow for unequal distances, but the equal distance
model is more parsimonious and prior research has found that relative fit indices
tend to select the equal distance model over the unrestricted model (DeCarlo, 2002,
Table 4; also DeCarlo, 2005, p. 57); effects (which appear to be small) of relaxing
this assumption are also being examined in current research.

A second basic idea of SDT is that the raters arrive at a decision by using their
perceptions of essay quality together with response criteria that divide the decision
space into the four response categories; the three criteria are shown as vertical lines
in Figure 2. Thus, if a rater’s perception of a particular essay is below the first cri-
terion, c1, the rater responds “1”; if it is between the first and second criteria, the
rater responds “2,” and so on. A useful aspect of the interpretation in terms of SDT
is that it suggests reference points that obtained criteria can be compared to (e.g.,
the reference points reflect various decision aspects, such as attempting to maximize
correct classifications, or basing decisions on likelihood ratios, and so on; see Egan,
1975). For example, Figure 2 shows criteria located at the intersection points of ad-
jacent distributions (which is relevant when the number of latent categories is equal
to the number of response categories and is where the likelihood ratios of adjacent
distributions are unity), which is relevant to earlier discussions in SDT (Egan, 1975;
Wickens, 2002) and to results found in recent studies of criteria locations in large-
scale assessments (DeCarlo, 2008a).
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The latent class signal detection model follows from Figure 2 and the assumptions
discussed above and can be written as

p(Y jl ≤ k|ηl = η) = F(c jkl − d jlηl), (2)

where Yjl is the response of jth rater to the lth item, where the response is a discrete
score k with K categories, ηl is a latent categorical variable for the lth item that takes
on M values η from 0 to M – 1 (the values implement the equal distance restriction
on djl, see Figure 2), F is a cumulative distribution function (for a location-family of
distributions, such as the logistic or normal), djl is a detection parameter for the jth
rater and lth item, cjkl are K – 1 strictly ordered response criteria, cj 1l < cj 2l < . . .

< cj,K –1,l, for the jth rater, lth item, and kth response category, with cj 0l = –∞ and
cjKl = ∞. Note that, for the logistic model, djl and cjkl are scaled with respect to the
square root of the variance of the logistic distribution, π2/3.

By allowing for (category-specific) response criteria, the latent class SDT model
of (2) can handle a variety of rater effects. Rater effects refer to the observation
that raters can have tendencies to be lenient or strict, to not use end categories, to
restrict the range, and so on. For example, central tendency (see Myford & Wolfe,
2004) refers to the observation that some raters tend to not use (or underuse) the end
categories (e.g., tending not to use 1 and 6 on a 1 to 6 scale). In SDT, this effect
occurs if raters locate their highest criterion far to the right and their lowest criterion
far to the left (and so the probabilities of using the end categories are small); this
pattern was recently found in a latent class SDT analysis of a large-scale assessment
(DeCarlo, 2008a, Figure 4). Note that central tendency cannot be reflected in a simple
way by φjl in the rater model of Patz et al. (2002), because φjl only allows for changes
in the overall level of severity, and not for differential severity across the response
categories (as found below).

As another example, raters sometime show restriction of the range, in that they
may not use all of the response categories (e.g., they may only give responses of 2
through 6 for a 1–6 scale); some examples of this are shown below. Again, in SDT,
this type of effect simply means that the rater has a low criterion for the first category
(cj 1l), and so they rarely or never give a response of “1” (and vice-versa if they only
give responses of 1–5). However, this appears as higher (or lower) overall severity
(as measured by φjl) in the model of Patz et al. (2002), in spite of the fact that the
severity may be for only one of the response categories, and not overall. This and
other results are studied below by comparing estimates of cjkl to estimates of φjl in a
large-scale assessment.

Level 2: Item Response Theory with Latent Indicators

The second level of the HRM treats the latent categorical variable ηl for each item
(i.e., the true categories) as ordinal indicators of examinee proficiency θ (note that
the Level 2 model is the same for both of the Level 1 models discussed above). For
example, Patz et al. (2002) used the partial credit model (Masters, 1982), whereas we
use the generalized partial credit model (Muraki, 1992). Both models use adjacent
category logits (Agresti, 2002) and, in particular, the generalized partial credit model
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can be written as3

log

[
p(ηl = η+1|θ)

p(ηl = η|θ)

]
= alθ − blm, (3)

where ηl is a latent categorical variable for item l that takes on values η from 0
to M – 1 (it is assumed that the number of latent classes, M, is the same as the
number of response categories given in the scoring rubric, K, as discussed above,
but this need not be assumed), θ is a latent continuous variable (examinee profi-
ciency) assumed to be N(0, 1), al is an item discrimination parameter for the lth
item, and blm are M – 1 “item step” parameters (Masters, 1982), with m = η + 1
(so that the step parameters are bl 1, bl 2, and so on); the step parameters are also
sometimes referred to as transition parameters (e.g., de Ayala, 2009). Equation 3
models the log of the ratio of a probability of a response in Category 1 (i.e., η + 1)
versus Category 0 for η = 0, Category 2 versus Category 1 for η = 1, and so on.
Using other transforms in the above, such as cumulative logits in lieu of adjacent
category logits, gives other IRT models, such as the graded response model (Same-
jima, 1969). The partial credit model follows from (3) if al is set to be equal across
items.

Adjacent category logits are used in the generalized (and partial) credit model be-
cause they were motivated by Masters (1982) in terms of “step” or transition proba-
bilities between adjacent scores. For example, the first step parameter bl 1 determines,
for item l, the probability of going from a score of zero to a score of one; the second
step parameter bl 2 gives the probability of going from a score of one to a score of
two, and so on. This is explicitly shown by (3). The model is also often written in
terms of probabilities, in which case (3) can be rewritten as

p(ηl = η|θ) = e
∑η

m=0(alθ−blm )

∑M−1
v = 0 e

∑v
g = 0 a

l θ
−blg

,

where
0∑

m = 0
(alθ − blm) ≡ 0 (cf. Masters, 1982). Note that estimates of the marginal

latent class sizes (given below), p(ηl), can be obtained by computing the product of
p(ηl |θ) and the node weights, wq, at each quadrature point θq (used in Gaussian
quadrature, see the estimation section below) and summing over all nodes.

The HRM-SDT Model

Figure 3 illustrates the complete HRM-SDT model with a latent class SDT model
as the first level model and an IRT model as the second level model. As before,
curved arrows are used to indicate nonlinear relations. In the first level, the raters’
responses Yjl (actually, the response probabilities) have a nonlinear relation to the
raters’ perceptions � jl of essay quality, with the response probabilities depending
on the raters’ criteria locations cjkl, as shown in Figure 2. The location of the raters’
perceptions, � jl, in turn depends on the true essay category, ηl; the straight arrows
from ηl to � jl in Figure 3 indicate a linear relation, and in particular the mean of � jl
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Figure 3. The HRM with a latent class signal detection model at
Level 1, referred to here as the HRM-SDT model.

is shifted by djl as the latent category ηl increases by one. As shown in Figure 2, djl

indicates the distance between the rater’s perceptual distributions and is a measure
of rater precision. In the second level, the true categories ηl serve as indicators of
examinee proficiency θ, with discrimination and item step parameters al and blm, as
shown in Figure 3.

Figure 3 shows that the HRM-SDT (and the HRM) is a type of higher-order factor
model (see Bollen, 1989), with a latent class SDT model for the first level and an
IRT model for the second level. Relations of the latent class SDT model to discrete
factor models and discrete IRT models, as well as other models (e.g., located latent
class models), are noted in DeCarlo (2002, 2005, 2008a); relations of the HRM to
the Rasch model and generalizability theory models are discussed in Patz (1996) and
Patz et al. (2002).

The complete HRM-SDT model includes both the Level 1 and 2 components
given above. Let Y denote the vector of response variables for examinees, that is,
Y = (Y 11, Y 12,. . .,Y 1L, Y 21,. . ., Y 2L,. . .,YJ 1,. . ., YJL), where Yjl is the response vari-
able (which varies over examinees) for rater j and item l. Note that, for situations
that commonly arise in practice (such as for the large-scale assessment examined
here), some vectors of this matrix will be missing, in that the raters score only some
of the examinees and also score only one of the items, for example.4 Let η = (η1,
η2,. . ., ηL) indicate the L latent categorical variables for the CR items, each with M
categories. The HRM-SDT model is

p(Y) =
∑

η

∫

θ

p(Y|η, θ) p(η|θ) p(θ)dθ, (4)

where p(Y|η, θ) is the rater component of the model (i.e., the first level) and p(η|θ) is
the model for the CR items (the second level). Two important assumptions are made
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in Level 1. The first is that, conditional on the latent variables η, the observed ratings
are independent of ability θ. The second is that, conditional on the vector of latent
variables η, the ratings are independent. These two assumptions simplify the rater
component of the model as follows:

p(Y|η, θ) = p(Y|η) =
∏

jl

p(Y jl |η), (5)

where j indicates the rater and l indicates the CR item. The conditional probabilities
p(Yjl |η) are obtained from (2) by differencing the cumulative probabilities.

For Level 2, an assumption of conditional independence of the L latent variables
given θ is made,

p(η | θ) =
∏

l

p(ηl |θ), (6)

where the conditional probabilities p(ηl |θ) are obtained from (3), rewritten in terms
of probabilities, as shown above. Substituting (5) and (6) into (4), and using the
differenced form of (2) for the response probabilities and the probability form of (3)
for the latent class probabilities, gives the complete HRM-SDT model.

Posterior Mode Estimation and Bayes’ Constants

The HRM has previously been fit using a fully Bayesian approach implemented
via Markov chain Monte Carlo (MCMC) methods (Patz et al., 2002). Here we present
some notes on fitting the HRM-SDT model using maximum likelihood estimation
(MLE) or posterior mode estimation (PME), the latter of which is a partly Bayesian
approach that is useful for dealing with boundary problems, as discussed below. The
approach can easily be implemented in current software.

The log likelihood function for the HRM-SDT is,

log L =
∑
ny

log f (y) =
∑
ny

log
∑

η

p(y|η) p(η),

=
∑
ny

log
∑

η

p(y|η)
∫

θ

p(η|θ) p(θ)dθ,

=
∑
ny

log
∑

η

∏
jl

p(y jl |η)
∫

θ

∏
l

p(ηl |θ) p(θ) dθ,

where the sum over all patterns of y and ny is the number of observations for pattern
y. MLE can be performed using the expectation-maximization algorithm (Dempster,
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Laird, & Rubin, 1977). Most implementations, including the one utilized here, ap-
proximate the integral over θ with Gaussian quadrature. The result is that the integral
is replaced by a summation over Q quadrature points θ1, θ2, . . ., θQ. Implementa-
tion of the approach in latent class software such as LEM or Latent Gold has been
discussed in Vermunt (1997) and Vermunt and Magidson (2005).

A limitation of the approach via MLE is that boundary problems often occur, as
has long been recognized in latent class analysis (e.g., Clogg & Eliason, 1987; Maris,
1999). Boundary problems occur when one or more of the parameter estimates are
close to the boundary, such as obtaining an estimate of a latent class size of zero
or unity, or obtaining a large or indeterminate estimate of detection (with a large or
indeterminate standard error).

A number of authors have discussed the use of PME as a simple way to deal with
boundary problems (e.g., Galindo-Garre & Vermunt, 2006; Gelman, Carlin, Stern,
& Rubin, 1995; Maris, 1999; Schafer, 1997; Vermunt & Magidson, 2005). In PME,
rather than maximizing the log likelihood, the log posterior function is maximized.
Note that the posterior is related to the likelihood and prior as follows:

posterior ∝ prior × likelihood,

that is, the posterior is proportional to the prior times the likelihood; in PME, the
prior in essence acts as a penalty for solutions that are close to the boundary.

One approach is to place priors on the conditional probabilities for responses
and latent classes, instead of placing priors (directly) on the model parameters
(e.g., see Agresti, 2002; Galindo-Garre, Vermunt, & Bergsma, 2004). Let πy jl/η

and πηl |θ denote the response and latent class probabilities, respectively, as given by
(5) and (6). Using the Dirichlet distribution as a prior gives

p
(
πy jl/η

) ∝
∏
η

∏
k

p(y jl = k|η jl = η)α1 − 1,

p
(
πηl |θ

) ∝
∏
η

p(ηl = η|θ)α2 − 1,

for the conditional response and latent class probabilities, respectively, where

α1 = 1 + B1
�
π jkl

M L
,

α2 = 1 + B2Wq

M L

(see Vermunt & Magidson, 2005), where the Bayes’ constants, B, determine the
strength of the prior distribution and can be thought of as the number of observa-
tions added to cells of the (complete) data frequency table; wq are (scaled) weights
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used in Gaussian quadrature (i.e., the observations are in essence distributed across
the quadrature points according to the node weights), M is the number of latent class
categories, L is the number of CR items, and π̂ jkl are the observed marginal propor-
tions for Yjl. For the latent class probabilities, the Bayes’ constants are in essence B2

pseudo-observations that are split across the ML latent class patterns and weighted
by wq for the Q nodes. For the response probabilities, B1 is split across the ML latent
class patterns and weighted by the observed marginal probabilities of Yjl for the K
response categories (instead of simply split across the K response categories), as dis-
cussed by Clogg, Rubin, Schenker, Schultz, and Wiedman (1991) and Vermunt and
Magidson (2005).

The important aspect to note is that, for the Level 2 generalized partial credit
(GPC) model, a larger value of B2 penalizes the likelihood more and so the fitted data
is smoothed toward an independence model; thus, al of the IRT-part of the HRM-
SDT is smoothed toward zero and blm is smoothed toward locations that give equal
probabilities. For the Level 1 rater model (latent class SDT), larger values of B1

smooth djl toward zero and, because of the smoothing toward the observed margins
(under independence), there is only a small effect on cjkl (it is smoothed toward the
marginal probabilities and not toward equal probability locations, which one can
argue is a more sensible approach; see in particular Clogg et al., 1991). PME with
Bayes’ constants used in the manner described above has been implemented in Latent
Gold (Vermunt & Magidson, 2005), which was used here to fit the HRM-SDT model.

The HRM model of Patz et al. (2002) was fit using MCMC in WinBUGS (Lunn,
Spiegelhalter, Thomas, & Best, 2009). The approach was the same as described by
Patz et al. (2002), except for a minor reparameterization, which is that the discretized
normal density shown in (1) was used, but with a slope parameter τjl = 1

2�2
jl

, with a

Gamma(1,1) prior for τ and a N(0,4) prior for φ.

Parameter Recovery for the HRM-SDT

Parameter recovery for the HRM-SDT using MLE or PME as described above has
been previously investigated in several simulation studies (DeCarlo, 2008b, 2010;
DeCarlo & Kim, 2009; Kim, 2009). For example, results for simulations of fully
crossed (across-rater) designs (i.e., all raters score all essays) were presented by
DeCarlo (2008b, 2010) and by Kim (2009). The main findings were that the rater
parameters for the SDT model (first level) were generally well recovered. For the
second level (IRT model), the item parameters were poorly recovered for the gener-
alized partial credit model when there were only two items, whereas recovery of the
item parameters was greatly improved when a third item was added. Boundary prob-
lems also occurred; however, it was shown that using PME with Bayes’ constants of
unity led to good parameter recovery.

Kim (2009) presented simulations that examined parameter recovery in the HRM-
SDT for incomplete designs (across raters), as obtained in many real-world assess-
ments (i.e., each rater scores only a subset of examinees, and so there are missing
values). PME with Bayes’ constants of unity was used. Kim found that, for the SDT
part of the model, parameter recovery for the HRM-SDT was good for a range of
detection (d) that is found in practice (e.g., about 1 to 6; see DeCarlo, 2005, 2008a,
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2008b, 2010). Estimation of the item parameters was marginal for the generalized
partial credit model when there were only two items, and was improved when a
third item was added, as was also found for fully crossed designs. Kim (2009) and
DeCarlo and Kim (2009) also noted that, when the HRM-SDT was extended by
using multiple choice items as direct indicators of θ in Level 2, estimation of the
CR item parameters (Level 2) was greatly improved, even with only one or two
CR items. Another interesting result was that estimation of the rater parameters at
Level 1 also appeared to be slightly improved when multiple choice items were added
in Level 2.

In sum, simulation studies have shown that the rater parameters are generally well
recovered for the HRM-SDT model (at least for PME with Bayes’ constants of unity,
as also used here). The item parameters also appear to be adequately recovered, al-
though when the generalized partial credit is used as the Level 2 model, more than
two items or other additional information (i.e., such as that provided by multiple
choice items) appear to be needed for adequate parameter recovery, though this re-
quires further study.

The next section applies both the HRM-SDT model and the HRM of Patz et al.
(2002) to data from a large-scale language assessment. Particular attention is paid to
results for the Level 1 model, the rater model, given that this is where the models
differ, although results for Level 2 are also examined.

Application to a Large-Scale Assessment

The real-world data are from a large-scale language assessment where each exam-
inee wrote two essays. The data consist of essays from 2,350 examinees obtained on
one test day, with each examinee answering the same two CR items. Each essay was
scored by 2 raters out of a pool of 54 raters; 34 of the raters scored the first item,
whereas 20 different raters scored the second item; in addition, 13 raters who scored
the first item also scored the second item (but for a different examinee) and so the
first item was scored by 34 raters and the second item was scored by 33 raters (with
13 common raters). The scoring rubric consisted of a 1 to 5 rating scale. Each rater
scored anywhere from 7 to 484 essays, with a mean of 174 essays per rater (median
of 168).

Results

Level 1: Rater Models

Detection. Figure 4 shows, separately for each item, the distribution of estimates
of the rater detection parameter, djl, obtained for a fit of the HRM-SDT model. The
estimates of djl are generally within a range of 1 to 6, as also found in previous stud-
ies (e.g., DeCarlo, 2002, 2005, 2008a; Kim, 2009), and are approximately normally
distributed. The mean djl for the first item (3.8) is higher than for the second item
(3.1), which suggests that the raters were better at detecting the true categories for
the first item than for the second item. However, this result could also reflect that
a (mostly) different set of raters scored the second item. For the subset of 13 raters
who scored both items, the mean of djl was 3.6 for the first item and 3.0 for the sec-
ond item, which again suggests that rater detection was better for the first item. With
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Figure 4. Frequency plots of the estimates of detection (d) for the HRM-SDT model for the
first and second items.
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Figure 5. Plots of estimates of the rater precision parameter τ for the HRM model of Patz et
al. (2002) against estimates of the precision parameter d for the HRM-SDT model,
separately for each item.

respect to estimates of the rater precision parameter τjl for the HRM model, the mean
was 2.0 for the first item and 1.8 for the second item.

Figure 5 shows a plot of estimates of the rater precision parameter τjl, where τjl

= 1
2�2

jl
, for a fit of the HRM of Patz et al. (2002), against estimates of djl for a fit of

the HRM-SDT. The figure shows that the precision estimates are generally similar
across the two models; however, there are some differences. For example, in the right
panel for item 2, the two filled circles near to djl = 3.5 suggest that the two raters
show adequate precision; however, they would be tagged by the HRM of Patz et al.
(2002) as performing poorly, given that the estimates of τjl are among the lowest;
differences of this sort could potentially have practical implications (e.g., in terms of
monitoring rater performance).

346



Rater
343229262423222019181615141110974321

R
el

at
iv

e 
C

ri
te

ri
a

0

1

Rater
5453525150494847464544434241403938373635

R
el

at
iv

e 
C

ri
te

ri
a

1

0

CR Item 1

CR Item 2

Figure 6. Plots of the relative criteria locations (circles) for HRM-SDT for 41 raters, shown
separately for each item. The solid horizontal lines show intersection points for the underlying
distributions (see the text). Estimates of the severity parameter (φ) for Patz et al.’s (2002)
model are also shown (as inverted triangles); the dotted line shows φ = 0 (note that the zero
and inverted triangles are shifted down by –.5 for visual clarity). The filled circles show
examples that are discussed in the text.

Response criteria and rater effects. Figure 6 shows, for fits of the HRM-SDT
model, estimates of the (rescaled) response criteria cjkl locations for 21 raters who
scored only the first item (top graph) and 20 raters who scored only the second item
(bottom graph; the remaining 13 raters who scored both items are discussed below).
Note that it is difficult to compare the absolute criteria locations across raters when
djl differs across raters (e.g., because the intersection points then differ across raters),
whereas it is more informative to examine locations of the criteria rescaled so that
the underlying distributions all have the same relative locations for all of the raters,
with the lowest distribution at 0 and the highest at 1; these were referred to as relative
criteria locations by DeCarlo (2005, 2008a). In particular, djl is rescaled to be one for
each rater, with cjkl also rescaled (by dividing it by the estimate of djl times one minus
the number of latent classes). This allows the criteria locations to be compared across
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raters, in that they indicate where the rater locates his or her criteria relative to the
intersection points of the underlying distributions. In particular, the four horizontal
lines between 0 and 1 in Figure 6 show the four points at which the five underlying
distributions (for the five latent categories) intersect.

The top plot of Figure 6 shows that, for the first item, the relative criteria locations
for the 21 raters (shown as circles; the triangles are discussed below) are generally
remarkably close to the intersection point locations, which shows that the intersection
points serve as useful reference points. The bottom plot of Figure 6 shows that, for
the second item, the third and fourth criteria (top two circles) are generally close
to the intersection points; however, the first and second criteria (bottom two open
circles, the filled circles are discussed below) tend to fall below the first and second
lines. This means that the raters gave fewer scores of 1 and 2 for the second item (as
compared to the first item), and so they were more lenient on the lower end for the
second item. Note, however, that they were not more lenient with respect to giving
scores of 4 or 5, and so the leniency is only with respect to low scores, and not high
scores (note that “leniency” and “severity” are being used here only in a relative way,
that is, relative to other observers).

Figure 6 also shows several other rater effects. For purposes of comparison,
Figure 6 also includes, for a fit of the HRM of Patz et al. (2002), estimates of the
severity parameter φj, which are shown as inverted triangles; note that the severity
estimates are all shifted downward in Figure 6 by –.5 for visual clarity (the dotted
line shows the zero point for φj). The first result to note in Figure 6 is that, when
the relative criteria estimates lie on or close to the horizontal lines, as for Raters 3
and 32, for example, the estimates of φj are close to zero (i.e., the inverted triangles
are close to the dotted line). Thus, Figure 6 shows that, when a rater’s criteria in the
HRM-SDT model are close to the intersection points, the severity parameter in Patz
et al.’s model tends to be near zero.

Figure 6 also shows several cases where estimates of the criteria (cjk) are all simply
shifted downward, indicating a more lenient rater, as for Raters 4 and 29 (the circles
are all below their corresponding lines). In these cases, the estimates of φj are also
shifted downward, also indicating a more lenient rater. Similarly, when the criteria
estimates are (mostly) simply shifted upward, as for Rater 9, then the estimate of φj

is also shifted upward, which indicates that the rater is relatively more severe. Thus,
results for fits of the HRM-SDT and HRM show that φj adequately captures simple
upward or downward shifts in the response criteria cjk (as it should), which indicates
whether a rater is overall more severe or lenient.

However, when the response criteria show patterns other than a simple upward or
downward shift, differences between cjk and φj appear. Rater 11 in the top plot of
Figure 6 provides an example. The criteria estimates in this case show that the rater’s
first criterion (circle) is below the first horizontal line and the fourth criterion is above
the last line, which suggest that the rater tends to under-use the end categories of 1
and 5; for additional examples where this tendency appears, see DeCarlo (2008a)
and Kim (2009). As discussed above, this effect is referred to in the measurement
literature as central tendency, because the rater tends to primarily use the middle
categories (Myford & Wolfe, 2004). It is also interesting to note that the middle two
criteria for Rater 11 are close together, which indicates that the rater gives scores of 2
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and 4 but tends to not give a score of 3. Unfortunately, this detail is lost with respect
to the estimate of φj for the HRM, shown as a filled triangle, which is simply close
to zero for Rater 11. Thus, in this case the rater severity parameter of the HRM of
Patz et al. (2002) does not reveal a rater effect, namely central tendency, whereas the
HRM-SDT does. This occurs because φj represents an average effect for each rater,
and so it cannot capture the under-use of end categories shown by Rater 11 (particu-
larly when the under-usage is fairly symmetrical).

Another interesting example is Rater 23 (top plot of Figure 6). The criteria esti-
mates from the HRM-SDT model show that this rater tends to not use scores of 1
and 5, as shown by the extreme locations of the first (bottom filled circle) and fourth
(top filled circle) criteria, and so this rater can be said to also show central tendency.
Note that the third and fourth criteria for Rater 23 (top two filled circles) are well
above the third and fourth intersection locations (top two lines), whereas the first cri-
terion (bottom circle) is well below the first intersection location (bottom line; and
the second criterion is on the appropriate line). Put simply, Rater 23 is severe with
respect to assigning scores of 4 and 5, in that the rater tends to not give these high
scores, but is lenient with respect to low scores, in that the rater tends to give a score
of 2 over a score of 1 (i.e., the rater tends to not give the lowest score). With respect
to the HRM, Figure 6 shows that Rater 23’s severity (filled inverted triangle) is well
above zero, and so the rater is tagged by the HRM simply as being severe. This is a
not an accurate summary of Rater 23’s performance, however, in that the rater is only
severe with respect to high scores but is lenient with respect to low scores, which is
nicely shown by the relative criteria estimates of the HRM-SDT.

The bottom plot of Figure 6 shows five cases, shown as filled circles, where the
raters did not use all of the response categories. In all cases, the raters only gave
scores of 2 through 5, and so the lowest filled circle is c2 (and not c1). Note that
Rater 53’s three relative criteria (for the HRM-SDT, circles) are located at the ap-
propriate intersection points (horizontal lines) and the estimate of φj (for the HRM,
inverted triangle) is close to zero, as was also found in the top plot of Figure 6. The
other four raters in the bottom plot (filled circles) show relative criteria that tend to
be close to or below the intersection points and these raters are tagged as “lenient” by
φj (i.e., the filled inverted triangles are low). However, the simple conclusion of le-
niency is again not accurate. For example, for Rater 45, the second criterion is clearly
below the intersection point (i.e., the lowest filled circle, which is c2, is on the first
line rather than on the second line); however, the third and fourth criteria are close to
their corresponding intersection point locations (they are close to the top two lines).
Thus, Rater 45 is lenient only with respect to tending to give a score of 2 over a score
of 1; however, the rater is not lenient with respect to assigning scores of 4 or 5, and
so the simple conclusion of leniency suggested by φj is not accurate. The examples
reflect (expected) limitations of φj with respect to dealing with situations where not
all of the response categories are used or the categories are used differentially across
the scale.

Raters who scored both items. Figures 7 and 8 present results for the 13 raters
who scored both items. Figure 7 shows that estimates of the detection parameter dj

of the HRM-SDT show a degree of consistency across the two items; the Pearson
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Figure 7. A plot of the estimates of d
(HRM-SDT model) for the second item
against estimates of d for the first item
for 13 raters who scored both items.

correlation is r = .64 with p = .018. There was a somewhat weaker relation between
τj for these raters, with a correlation of r = .45 with p = .123.

Figure 8 shows estimates of the relative criteria locations and φj for the 13 raters
who scored both items. Differences in score category usage, as discussed above for
Figure 6, again appear. Figure 8 shows that, in general, the raters’ first two criteria
locations tend to be lower for the second item as compared to the first item (i.e., the
lower two circles are close to the lower two solid lines in the upper plot but tend
to be below the lines in the lower plot). This means that the raters tended to give
fewer scores of 1 or 2 for the second item as compared to the first item. This result
was also found for raters who only scored one item (Figure 6), and so this result
appears both between and within raters. Figure 8 also shows that, as for the raters in
Figure 6, the raters only tend to be lenient with respect to not assigning low scores,
but this is not the case for high scores (4 or 5, given that the top two circles tend to
be close to the lines). Again, these details are not picked up by estimates of φj for
the HRM.

In summary, the results show that various rater effects such as central tendency,
restriction of the range, and other idiosyncrasies with respect to score usage, appear
in a large-scale assessment. The criteria estimates of the HRM-SDT model provide
useful information about these effects, whereas estimates of the severity parameter
φj of the original HRM do not always correctly reflect the effects. The detection
parameter dj of the HRM-SDT model also provides useful information about rater
precision; for the data examined here, the mean of dj (3–4) indicates good detection
and was consistent with values found in other (similar) studies.

Level 2: CR Item Model

HRM-SDT. The top part of Table 1 shows results for the second level of the
HRM-SDT model, which is the IRT model (i.e., the generalized partial credit model).
The estimates of the item discrimination parameters al are 2.97 and 4.92 for the first
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Figure 8. Plots of the relative criteria locations for the HRM-SDT model (circles) for
13 raters who scored both items, along with estimates of the severity parameter φ (inverted
triangles, which are again shifted down by –.5 for visual clarity) for the HRM model of Patz
et al. (2002).

and second items, respectively. Restricting the two al parameters to be equal gives a
difference in the log posteriors of 1.64 with 1 df (which suggests that the restricted
model is not rejected) with a common estimate of a of 3.73 (with a standard error
of .24). In light of the simulations reviewed above, there is likely low power to detect
differences in item discrimination when there are only 2 items (in which case the
partial credit model can simply be used). Table 1 also shows that the first two item
step parameters are lower for the second item as compared to the first, whereas the
last step parameter is higher; the result is smaller latent class sizes for the corre-
sponding categories, as shown next.

The middle part of Table 1 shows estimates of the latent class sizes, p(ηl), where
estimates of al and blm were used to get estimates of the conditional probabilities—
the conditional probabilities are multiplied by the weights and densities of the
11 nodes used for Gauss-Hermite quadrature and then summed, as noted above.
Table 1 shows that, for both items, Categories 3 and 4 have the largest estimated
class sizes. For the second item, there tend to be fewer cases in the first category as
compared to the first item, which is also indicated by the larger negative estimate of
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Table 1
Results for Level 2, the IRT Model (GPC), of the HRM-SDT and the HRM for a Large-Scale
Language Assessment

HRM-SDT

Parameters CR Item 1 CR Item 2

al 2.97 (.43) 4.92 (.92)
bl 1 –3.11 (.50) –7.76 (1.40)
bl 2 –1.43 (.23) –4.34 (.74)
bl 3 .85 (.24) .81 (.32)
bl 4 3.57 (.82) 6.08 (1.05)

Estimates of the Latent Class Sizes
Parameters CR Item 1 CR Item 2
p(ηl 1) .16 (.01) .07 (.01)
p(ηl 2) .18 (.01) .15 (.02)
p(ηl 3) .27 (.02) .36 (.02)
p(ηl 4) .25 (.02) .31 (.02)
p(ηl 5) .14 (.03) .11 (.01)

HRM
Parameters CR Item 1 CR Item 2
al 2.31 (.28) 3.78 (.43)
bl 1 –2.26 (.32) –8.04 (.88)
bl 2 –1.32 (.16) –4.49 (.50)
bl 3 .57 (.14) .90 (.32)
bl 4 2.65 (.35) 5.40 (.62)

bl 1 for Item 2 shown in the top part of the table (i.e., the category step boundary is
lower for going from the first to second category, and so there are fewer observations
in the first category). Note that, for both items, the latent class sizes suggest a slightly
negatively skewed distribution, which might reflect aspects of the language test; other
tests have given a more normal distribution. An analysis of a large sample (>42,000)
who took the language test also suggested negative skew (see DeCarlo, 2010,
p. 26).

HRM of Patz et al. (2002). The lower part of Table 1 shows estimates (i.e.,
posterior means and standard deviations) of Level 2 parameters obtained for a fit of
the HRM of Patz et al. (2002). The item discrimination and item step parameters,
al and blm, respectively, are slightly smaller than those found for the HRM-SDT but
show a similar pattern, in that discrimination al is higher for the second item (the
posterior standard deviations also tend to be smaller than the standard errors shown
in the top of the table). The item step parameter estimates blm for the HRM are close
to those found for the HRM-SDT model (and so the latent class size estimates, not
shown, are also very close to those shown in the middle of the table). Overall, it
appears that using Patz et al.’s model as the Level 1 model (and MCMC) in lieu of
the SDT model gives similar results with respect to the Level 2 parameters.

352



Discussion

The use of CR items is an integral part of educational assessment. Given that
CR items require raters to score them, a model of rater behavior in CR scoring is
needed. A latent class signal detection model provides a useful framework for un-
derstanding how raters score items and for monitoring and evaluating rater perfor-
mance; here it is shown that the model can easily be incorporated into the HRM.
The approach has advantages over the signal detection-like model used by Patz et
al. (2002), in that the latent class SDT model can capture the “catalog of rater ef-
fects” (Myford & Wolfe, 2004) that appear in real-world data. In particular, a fit
of the SDT model provides information about the locations of raters’ response cri-
teria, cjkl, and the criteria locations in turn provide information about various rater
effects. The SDT model also provides an estimate of rater detection, djl, which re-
flects rater precision. The approach via SDT also avoids problems that arise with the
signal detection-like model of the original HRM, as discussed above. The HRM-
SDT can easily be fit with standard software, given that it is within a family of
generalized linear models with latent variables (e.g., Skrondal & Rabe-Hesketh,
2004).

As shown in Figures 1 and 3, the hierarchical model differs from the usual IRT
approach to rater scoring in that the HRM includes a middle layer, η, whereas rater
responses Yjl load directly (and nonlinearly) on examinee proficiency θ in an IRT
approach. As discussed above, the IRT approach raises problems with respect to in-
creasing precision of estimates of examinee proficiency with increasing numbers of
raters. Here it is noted that it also follows from the hierarchical model that an IRT
analysis of CR items confounds rater effects (i.e., the response criteria and detec-
tion parameters) with item effects (i.e., the item step and discrimination parame-
ters). For example, an item might appear to be more difficult for a different sam-
ple in an IRT approach not because of a change in item difficulty, but because of a
change in rater severity. This type of problem with an IRT approach has previously
been recognized and has led to suggestions as to how to link CR items (e.g., Tate,
1999).

The HRM does not raise this problem because it separates rater effects (djl and cjkl)
from item effects (al and blm), and so one can evaluate aspects of the raters separately
from aspects of the items (e.g., the particular essay question). For example, the re-
sults found above suggested that rater detection djl was, on average, lower for the
second item than for the first, whereas item discrimination ajl appeared to be higher
for the second item. This means that the raters were less able to detect the correct
categories for the second item (lower djl), but the true categories for the second item
provided higher discrimination of examinee proficiency (higher ajl). Put simply, the
first result tells us how accurately the raters can determine the true categories of the
essays, whereas the second result tells us how well a particular item (i.e., the essay
question) functions with respect to discriminating between examinees’ proficiency.
The separation of rater and item aspects by the hierarchical model offers interesting
possibilities with respect to item banking and has implications for the equating of
CR items and the study of rater drift, some of which are being examined in current
research.
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Notes
1This is not to say that the rubric necessarily defines the correct number of categories.

The SDT model is useful in this respect in that one can easily compare the relative fit of
models with different numbers of latent categories (see DeCarlo, 2005). Suffice it to say that
if empirical evidence for a different number of latent categories is consistently found, then the
scoring rubric needs to be rethought and revised.

2Note that estimates of ψ of .05 and .06 give estimates of τ of 1/(2 × .052) = 200 and τ =
139, whereas estimates of τ obtained here are in the range of 1 to 3.5, and those obtained by
Patz et al. (2002) are generally around ψ = .40 which gives τ = 3.1. Thus, in terms of τ, the
estimates of 200 and 139 seem excessively large and could reflect boundary problems.

3To show the model that was actually fit, the parameterization is changed slightly from the
usual al (θ − blm).

4Bock, Brennan, and Muraki (2002) noted that a nested design, with different raters across
two or more items, as illustrated in Figures 1 and 3, minimizes the effects of differences in
rater severity, and so this type of design is commonly used in large-scale assessments.
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