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Two studies examined the different features of humanoid robots and the influence on children’s affective
behavior. The first study looked at interaction styles and general features of robots. The second study looked
at how the robot’s attention influences children’s behavior and engagement. Through activities familiar to
young children (e.g., table setting, story telling), the first study found that cooperative interaction style
elicited more oculesic behavior and social engagement. The second study found that quality of attention,
type of attention, and length of interaction influences affective behavior and engagement. In the quality
of attention, Wizard-of-Oz (woz) elicited the most affective behavior, but automatic attention worked as
well as woz when the interaction was short. The type of attention going from nonverbal to verbal attention
increased children’s oculesic behavior, utterance, and physiological response. Affective interactions did not
seem to depend on a single mechanism, but a well-chosen confluence of technical features.
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1. INTRODUCTION

Humanoid robots consist of biologically inspired features [Bar-Cohen and Breazeal
2003] and intelligent behaviors that make complex interactions with humans possi-
ble. Humanoid robots present an array of interesting design choices when modeling
affective interactions with humans. The human-like appearance of robots naturally
elicits a social response, revealing new insights to the role of personal robots. Social
relations with robots may be hard to define, but the codependency between human and
technology is clear.

In developing models to promote affective interactions, a two-way approach is con-
sidered. One approach is from the robot’s perspective. Advancement in sensors and
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audio-visual tools help “detect” human behavior, while automation and expressive
tools help robots “respond” affectively toward humans. Identifying a delicate balance
between “detection” and “response” has improved the overall quality of human-robot
interaction. Not only have the standards for engagement increased, but more familiar-
ity with robots makes children’s expectations higher, and tolerance lower. As Sheridan
[2002] states, “design engineers have to be taught that an object is not design of a thing,
but design of a relationship between human and a thing.”

Another approach is from the human perspective. Much attention has been given in
making machines more responsive and sophisticated. Little research has been done to
examine which features elicit affective responses in children. Technology as a tool can
examine how humans interpret, understand, and behave around technology. Learning
about humans through the use of technology allows human users to become part of the
system and part of the design. Models for affective interaction cannot be developed in
isolation from one another. Experimental studies help isolate features that contribute
to human response and behavior. These approaches involve the background of both cog-
nitive science and Human-Computer Interaction (HCI) to develop technological tools
and activities that test theories about human-robot interaction and human behavior.

This research is ongoing, and introduces work from two recent studies. The first
study looks at interaction styles (lecture versus cooperative versus self-directed) and
general features (human-like versus monotone robot-like voice) in robots. The findings
are incorporated into the design of experimental tools and interaction models. The
tool and model is then implemented into the robot and tested in the second study.
The second study looks at the robot’s attention feature, and the influence on affective
engagement and behavior. As future work, the article explores physiological sensors as
a way to measure the influence of attention on affection.

2. RELATED WORK

Research has examined the future potential of robots as a social companion for adults
[Mutlu et al. 2006], children [Okita et al. 2009; Kanda et al. 2004], elderly assistance
[Wada et al. 2002], special needs [Robins et al. 2004], and within the home [Bartneck
and Forlizzi 2004]. Often these biologically inspired life-sized robots are designed to
resemble a human and/or animal in appearance, form, and function. This often elicits
a social response tapping into people’s prior knowledge and experiences. The challenge
has been to understand the reach of these robots for children who often are quite ex-
pressive when it comes to affective responses. Evolution has provided some answers
on how children make attributions toward artifacts [Gelman and Gottfried 1996], but
humanoid robots present a new array of interesting design choices when it comes to
modeling affective interactions [Arsenio 2004]. In a study with entertainment robots
[Okita and Schwartz 2006], children applied “scripts” of familiar play routines when
interacting with robotic animals (e.g., playing house, doctor) through which they en-
gaged in affective social interactions. The study examined how children make animistic
intuitions based on the robots’ appearance and behaviors. Children observed robotic
animals (e.g., Sony’s Aibo, Omron’s NeCoRo, AIST’s Paro) exhibit different behaviors
(e.g., find and kicks ball, dances to music, no behavior/off) in response to the environ-
ment. One implication of the results was that children bring a syncretic set of beliefs
to robots and develop the category “robot” slowly in a piecemeal fashion. Rather than
replacing one theory with another, they change discrete beliefs based on facts they
may have acquired about technology differing from living things. Children’s attribu-
tions were only mildly connected to the robot’s behavior. For instance, children inferred
that robots need food, but couldn’t grow with the hard exterior shell. Some felt robots
needed a remote control to move, could not be associated with any negative feelings
(e.g., become sad, or angry), or be capable of any “bad” behavior. However, some felt
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that the robot dog could still be “bad” and jump on the couch when no one was looking.
The study also found that for older children, improving the realism of the robots did not
have much effect on the child’s conceptual beliefs. The effects of robot realism seemed
to be in the child’s beliefs and ideas than in appearance. Enabling the child to activate
a familiar schema, through which s/he can sustain a social relationship with the robot,
seemed far more important. Children were more likely to share positive emotions and
empathy with the robots as part of familiar schema.

3. ROBOTIC FEATURES AND ASSESSING AFFECTIVE INTERACTION IN YOUNG CHILDREN

Using experimental and observational methods, two studies were conducted. In ex-
amining what features in robots contribute to affective human-robot interaction, we
focused on how the robot’s voice, interaction style, and attention influence children’s
behavior and engagement.

3.1. Young Children’s Affective Interactions with Humanoid Robots

Proxemics, facial expressions (i.e., smile), and physical contact (i.e., touch) are often
used as measures for affection. However, in these studies, participants were young,
and robots were about the same size if not taller than the child. As a safety precaution,
affective measures that did not involve physical contact were considered.

As an affective measure, the two studies looked at the child’s oculesic behavior (i.e.,
direct eye contact) for important social and emotional information. Eye contact is a
good sign of attentiveness and involvement, and widely recognized as an “invitation
to communicate” [Anderson 2008]. Increased eye contact over time is often a sign of
affection and attraction, essential in establishing emotional closeness [Ray and Floyd
2006]. During the pilot stage of our studies, we found that children make direct eye
contact with the robot when they show interest, seek attention, have questions, want
approval, and express emotions (e.g., excitement, boredom). Since nonverbal communi-
cation is often interpreted within a broader social context, a series of body movements
(or kinesics) and nonverbal behaviors (e.g., oculesics) were looked at as a whole, and
coded (e.g., boredom, frustration).

No in-depth conversation analysis was conducted. The difference in cognitive and
language development across age groups made comparison difficult. For example, the
quality of interaction differed greatly with age. For 4 to 5 year olds, content did not
matter, conversation was more about timing and turn taking. As children grew older
(6 to 8 year olds) they talked less, but listened and answered more carefully. Older
children (9 to 10 year olds) only made remarks that they thought were within the capa-
bility of the robot. In general, one can say that the child’s conversation was constrained
by what the robot could do in response. Rather than focusing on a specific content or
conversation topic, the two studies looked at using familiar schemas applicable across
a wide age range of children (e.g., table setting, turn taking, story telling). Until robots
have the intelligence to flexibly respond to young children’s interactive bids, following
a well-known schema/script helped set a controlled direction for interaction. For this
reason, instead of content analysis, the child’s level of engagement was measured in
terms of the number of direct responses made toward the robot (including the number
of remarks initiated by child), and the total length of the conversation.

3.2. Influence of Specific Features on Child-Robot Interaction

The two studies attempt to see whether specific design features in robots influence
children’s affective behavior toward robots. The first study looks at two features. One
is the general feature of “robot voice” (e.g., human-like voice, monotone robot-like voice).
Scherer and Oshinsky [1977] mention how emotional attributions are often conveyed
more through sensory associations (e.g., sound, voice, gesture) than verbal descriptions.
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Fig. 1. Cognitive map system architecture.

Sound seems to have an immediate and cognitively unmediated effect on emotions that
could lead to positive and/or negative associations. The study wants to see if a human
child-like voice with natural gestures, or a monotone robot-like voice with minimal
and stiff gestures would influence the human-robot interaction. Interaction styles (e.g.,
lecture style, cooperative, self-directed) are examined to see if different “responses”
influence affective behavior.

From previous research, we realized that children often show attention seeking be-
haviors toward unfamiliar situations/objects. This behavior begins to appear when
children become bored, disengaged, or detect technical limitations. To entertain them-
selves, they often “test the tolerance level of the robot” rather than “communicate with
the robot.” If attention level increases, would children stop testing and start to com-
municate with the robot? Also, the study was interested in making attention a positive
experience (e.g., robot pays attention and listens to child) rather than negative (e.g.,
testing the robot/child or checking on the child). The second study looks at the quality
of attention (e.g., nothing/no attention, automatic attention, and Wizard-of-Oz) to see
if different levels of detection influence affective behavior. The study also looks at the
type of attention, nonverbal attention (e.g., nodding, looking at) and verbal attention
(e.g., “ok”, “wow”) to see if different responses influence affective behavior.

4. ENVIRONMENT SETUP AND SYSTEM ARCHITECTURE
FOR HUMAN-ROBOT INTERACTION STUDY

The interactive task in the first study was implemented using the cognitive map system
architecture [Ng-Thow-Hing et al. 2009]. The architecture allows specialized modules
for perception, decision-making, and a blackboard for communication (see Figure 1).
This architecture was used to manipulate the general feature, such as human-like voice
of text-to-speech module with the monotone, mechanical voice. The task matrix used
for robot expression consisted of modules for gesture creation and speech synthesis.
The table projector module highlighted the card selection and moved card images onto
the table.

4.1. Wizard-of-Oz

For the decision-making module, the Wizard-of-Oz (woz) approach was used. Human
operator(s) could direct the robot’s behavior through a remote console (see Figure 2).
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Fig. 2. Wizard-of-Oz application.

The children were led to believe that the robot was autonomous. Researchers expe-
rienced the challenges in developing robust speech recognition for children, and the
accurate detection/recognition of objects on the table. To successfully automate the
decision-making module, there was a need to gather information on how children be-
have around the robots. The woz interface gave that flexibility to examine the range of
behaviors and engage in free conversation.

The woz module allowed an XML-based script to be specified (e.g., describing se-
quences of commands for speech utterances, gestures, and projector operations). Con-
ditional sequences could be triggered by key presses to provide the operator a variety of
different robot responses in reaction to the child’s behavior. Each experimental condi-
tion was modeled with its own script. The operator could monitor several camera views
simultaneously as well as a virtual model of the robot’s current body configuration.

4.2. Recording Setup

To capture a complete range of behavior, seven cameras were arranged in the obser-
vation room (see Figure 3). Camera-1 is to capture facial expressions. Camera-2 is a
side camera for body posture. Camera-3 is an overhead view of the table and child.
Camera-4 features a head-mounted camera on the child to record where the children
are looking during the interaction [Yoshida and Smith 2008]. Camera-5 is the view
from the robot’s eyes. Camera-6 and camera-7 are high-definition cameras providing a
wide field of view. Audio was captured separately using a wide-array receiver micro-
phone and lapel microphones attached to the child. Parents were able to observe their
child through a window looking into the room.

4.3. Physical Safety and Ethical Safeguards

Physical safeguards were placed in the experimental setting to protect children during
robot interaction. The table for the card activity acted as a safety barrier between the
child and robot in case the robot lost balance. The table was a marker for the child to
stay behind the table and not get too close (e.g., looking under the robot’s elbow). The
robot had a stable balance, and was free standing, but a “hanger” was put in place in
case the robot needed support or if the child pushed the robot over. A panic button was
in place to stop all processes if needed.

All studies have IRB approval. Participation was voluntary, and participant rights
were clearly noted in the parental consent forms. Parents had the right to withdraw
their consent or discontinue participation at any time without penalty. The child could
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Fig. 3. Camera setup.

discontinue participation at any time, and could refuse to answer any questions. Chil-
dren were asked on several occasions if they would like to continue, quit, or take a
break. Parents also had the option to monitor the child in real time from a distance
(e.g., through a glass window, or through a video monitor). The video recordings of the
human-robot interaction primarily served as data (e.g., to observe oculesic behavior).
Consent was obtained before recording, only research staff would have access to the
data, and analysis required no personal identifiers. Findings from the study will only
be used for educational research purposes (e.g., conferences, research meetings, journal
publications, and articles).

5. INFLUENCE OF ROBOT FEATURES AND INTERACTION STYLE
ON AFFECTIVE ENGAGEMENT

The work on entertainment animals [Okita and Schwartz 2006] inspired many design
choices for this study with humanoid robots. The preferable age group seemed to be
between 4 to 7 years as these children are quite expressive with their feelings (e.g.,
bored, happy, scared). Robot appearance and behavior may not have shown any differ-
ence with robotic animals, but life-sized humanoid robots (i.e., same height as child)
may trigger a new array of affective responses (e.g., excitement, interest, fear). Inter-
action based on a familiar yet communicative activity (e.g., table setting, story telling)
is likely to increase engagement. Implementing a human-like feature that allows the
robot to display a range of responses (both verbal and nonverbal) can suggest differ-
ent communication modalities (e.g., gesture/speech) to children and generate affective
behavior and engagement.

The first study investigated the following: (1) how different interaction styles may
affect behavior in long, turn-taking activities, (2) how general features (e.g., monotone
robot-like voice versus human-like voice) influence children’s behavior, and (3) identify
important perceptual cues that need to be recognized and handled. Examining these
characteristics can be potentially useful when incorporating the findings into the design
of affective interaction scenarios.
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Fig. 4. Interactive environment with robot.

Fig. 5. Lecture style (top left), cooperative style (top right), self-directed style (bottom).

5.1. Interaction Style Study

In this study, Honda’s humanoid robot carried out one of three interaction styles (lec-
ture, cooperative, and self-directed) in a table setting task with children. Both the hu-
manoid robot and the child had their own set of utensil cards to set up each respective
side of the table. Figure 4 shows the experimental setting between the humanoid robot
and the child. The study compared three interaction styles and observed if interactive
patterns influenc children’s affective behavior. See Figure 5.

5.1.1. Lecture Style. A teacher-like humanoid robot lectured to the child on where to put
the table setting items. See Figure 5 (top left). For each item, the robot demonstrated
with his projected cards, and told the child where to place the item on his/her side. For
example, the robot would say, “Please place the napkin here,” and then pause to let
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Table I. Interaction Style Experimental Study Design

Monotone Feature Human-Like Feature
Lecture Robot-like mechanical voice Human-like child voice
Show and Tell Minimal Gestures Index and arm gestures
Cooperative Robot-like mechanical voice Human-like child voice
Copy you, Copy me Minimal Gestures Index and arm gestures
Self-Directed Robot-like mechanical voice Human-like child voice
You do, I do Minimal Gestures Index and arm gestures

the child carry out the task on his side of the table, then respond by “Great! Now place
the butter knife here”. At the end of the task, the robot and child had the same table
setting.

5.1.2. Cooperative Style. A peer-like humanoid robot cooperated with the child in de-
ciding and setting up each side of the table. The robot and child cooperated by taking
turns deciding where to put each utensil. See Figure 5 (top right). The child was asked
to engage in a (I) copy you (if you) copy me cooperative task. They would take turns
copying one another’s card placement. For example, the robot would say, “I am going to
put my napkin here. Can you please help me by placing your napkin in the same place,
but on your side of the table?” In return, the robot would also cooperate by placing
the same item in the same place (as the child) on the robot’s side of the table. The
robot responded to the child, “I see you placed the butter knife there. I will help you by
placing the butter knife in the same place but on this side of the table.” At the end of
the task, the robot and child had the same table setting.

5.1.3. Self-Directed Style. Humanoid robot and child shared the same environment, but
engaged in the task separately. This you do, I do interaction was similar to parallel
play. See Figure 5 (bottom). Both the robot and the child organized their own side of
the table one item at a time. For example, the robot would say, “I am going to put the
napkin here. Where do you want to place your napkin? Please place it anywhere you
like.” After the child places the card, the robot says, “Great! I think I’m going to put my
card over here.” At the end of the task, the robot and child had different table settings.

5.2. Research Method and Design

An experimental study was conducted where 37 children between the ages 4 to 10 years
old engaged in a 20 to 25 minute table setting activity with Honda’s humanoid robot
[Honda Motor Co. 2000]. This study was a between-subjects 3 × 2 study design where
interaction style (lecture versus cooperative versus self-directed) and general features
(human-like voice versus monotone robot-like voice) were independent variables (see
Table I). Human-like referrs to a computer-generated young child’s voice, with nat-
ural gestures that included nodding, pointing, and a stepping gesture going forward
and back when placing the (projected image) card. Monotone robot-like voice referrs to
a monotone mechanical voice, with stiff robot-like gestures of nodding, and stepping
forward and back. Children were randomly assigned to one of six conditions. No coun-
terbalancing took place because the study consisted of one common activity, with no
within-subject variables.

5.3. Procedure

Participants engaged in a 20 to 25 minute table setting activity with Honda’s humanoid
robot. The table setting activity (see Figure 4) involved taking turns placing pictures
of plates, napkins, and forks on the table. Placing small objects accurately and quickly
onto the table can be challenging for robots. For this reason, only the child used physical
cards, and the robot used images of cards projected on the table. During the interaction,
the robot shared four facts about the utensil (see Table II). Researchers were stationed
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Table II. Information for Each Item

Type of facts Object from Table Setting: Water Glass
Name “This is called a Water Glass”
Purpose “The water glass is used for drinking water during dinner”
Feature “If you look closely, you will notice that it has a large base

so it doesn’t tip over”
Application “When you drink from the glass, be sure to hold the water

glass by the stem to keep the water cold.”

behind a partition and monitored the interaction (see Figure 1, operator). After the
table setting task, a post-test was conducted to ask the child about each of the utensils
placed on the table.

5.4. Materials and Measures

Since the conversation was constrained by what the robot could do in response, the
interaction was structured around a familiar schema (e.g., turn taking, table setting),
to help control the direction of the conversation around familiar tasks (e.g., help setting
up for dinner) and objects (e.g., fork, spoon). The robot prompted the conversation with
the child by sharing both familiar and unfamiliar information about the utensil (e.g.,
name, purpose, distinct feature of the item, and how to use it). See Table II for examples.
The twelve utensils were water glass, breadbasket, salt and pepper, dinner knife, dinner
fork, spoon, dinner plate, butter knife, soupspoon, cup and saucer, centerpiece, dessert
fork, and napkin.

The behavioral measures included eye contact and the number of times direct com-
ments were made toward the robot. The study was also interested in examining what
important perceptual cues and responses the robot needed to recognize and handle
respectively. There were three behavior measures in the study: (1) the number of times
the child made eye contact with the robot, (2) the number of times the child made
comments toward the robot, and (3) qualitative patterns seen in the different affective
responses from children.

5.5. Results

Originally 37 participants were recruited, but one participant did not complete the
session. Interaction style (lecture versus cooperative versus self-directed) and general
features (human-like voice versus monotone robot-like voice) were both added in spite
of the small sample size of N = 36 that averaged to about n = 6 participants in each
condition. For this reason, the study closely observed whether there were any main
effects between the independent variables rather than running rigorous statistical
analysis for interaction effects. Focusing on the main effects allowed us to work with a
larger sample size to study interaction style (lecture n = 11, cooperative n = 12, self-
directed n = 13), and general features (human-like voice n = 19, monotone robot-like
voice n = 17).

5.5.1. Eye Contact. Measuring the child’s eye contact with the robot was important
because eye contact indicated comprehension, uncertainty, interest, and whether the
child was trying to communicate with the robot. Running a one-way ANOVA showed
that a significant difference was found between interaction styles F (2, 33) = 20.36,
MSE = 974.63, p < 0.001. Post-hoc Tukey’s HSD tests showed that cooperative style
was significantly higher when compared to both the lecture style (p < .01, Cohen’s d =
1.30, effect-size r = 0.54) and self-directed style (p < .001, Cohen’s d = 2.76, effect-size
r = 0.81). The difference between lecture style and self-directed style was approaching
significance (p = .056, Cohen’s d = 1.09, effect-size r = .048). Younger children (4 to
6 years) made more direct eye contact than older children (7 to 10 years), but the
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Fig. 6. Average number of direct eye contacts with the robot by interaction style younger children 4 to
6 years old (left), older children 7 to 10 years old (right).

Fig. 7. Average number of direct eye contacts made toward robot by general feature, younger children 4 to
6 years old (left), older children 7 to 10 years old (middle).

Fig. 8. Average number of direct comments made to robot by interaction style.

patterns were the same (see Figure 6). Over the course of interaction, the number of
cases decreased and leveled out. However, in the cooperative interaction style, younger
children showed a more gradual decrease. The self-directed style was flat over the
course of interaction for both young and older children. For general features (human-
like versus monotone robot-like voice), an independent t-test showed a significant
difference in the number of direct eye contacts made toward the robot F (1, 34) =
7.87, MSE = 1715.84, p < .01, Cohen’s d = 0.95, effect-size r = 0.43). Looking more
closely, general features seemed to matter more for younger children than for older
children (see Figure 7).

5.5.2. Direct Comments and Utterances. There was no difference in interaction style when
it came to the number of times children made direct comments to the robot F (2, 33)
= 2.14, MSE = 83.72, p = 0.134. However, direct comments were made more in the
cooperative style compared to lecture style or self-directed style (see Figure 8). Possibly,
the opportunity for the child to contribute her knowledge and choices to the robot in
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the cooperative style made the interaction more personal and motivating. There was
no significant difference in the number of times direct comments were made by age
(young: M = 4.29, SD = 11.04, older: M = 2.73, SD = 6.88).

5.5.3. Social Responses. There were three reoccurring social responses that stood out
during the interaction: (1) children’s expectations and their responses when expecta-
tions were not met, (2) different attention seeking behaviors made to the robot, and
(3) different quality of interactions by age. The study revealed that the robot behaviors
children found unpredictable. Children were repeatedly warned prior to the study that
the robot would take a step, but some children would leap back every time. Various
impressions were made toward the monotone robot-like voice as “unfriendly,” “scary,”
and “not the right voice for the robot.” For the human-like voice, children would say,
“he’s friendly,” “funny and fun,” and would ask about the age and gender, “Is he a kid
too?” “Is she is the same age as me?” Others showed confusion in that the robot can
talk without a visible moving mouth. Unnatural pauses in the robot triggered children
to troubleshoot by talking louder, waving their hands in front of the robot’s eyes, or
repeating the conversation. The comments children made toward the robot seemed to
imply that children see the robot as somewhere in-between a live entity and an active
machine. For example, a child would say, “Have you tested him out before?” “I’m afraid
it’s going to want to come over here.”

At times, slight delays were seen between a potential trigger and emotion. For ex-
ample, a child seemed happy interacting with the robot, when suddenly the child
expressed frustration and fear. Initially there was no visible incident that could have
the triggered such emotion. The reason turned out to be that the child was getting
frustrated little by little every time the robot “didn’t smile back at me when I smiled.”
This response showed a need for more emphasis on robot gesture to cover for the lack
of facial expressivity, and the need for physiological measures (e.g., skin conductance
sensor) to detect subtle emotional build-up.

This pilot study helped to see what kind of attention seeking behavior children show.
For example, as the children became familiar with the setting, they started to engage
in attention seeking behavior that tested the robot’s tolerance level (e.g., making faces,
hiding under the table, deliberately dropping things on the floor). Awareness of such
“attention seeking” behaviors can improve the robot’s robustness and responsiveness.
Children’s attention seeking behavior was more “testing the robot” than “communicat-
ing with the robot”. Much work needs to be done to bring the quality of interaction to
the next level (e.g., exchanging information, ideas) so a more meaningful relationship
may develop through affective interactions.

Another interesting behavior across age was the “quality of interaction.” We noticed
that younger children continued to initiate conversation with the robot even if they
received irrelevant responses. Young children around the age 4 to 5 years carried on
multiple conversations with the robot. In other words, what the robot was saying did
not matter. As long as there was a response, young children continued to talk and
solicit responses from the robot. For example, if the child said, “What is a cup and
saucer?” and if the robot replied with, “See how the cup fits perfectly on the saucer?”
the child would respond anyway with “I’m not supposed to drink coffee.” Older children
made fewer attempts, and were less flexible. Children 6 to 7 year olds would listen
carefully to the robot, but had very limited responses. For example, if the robot said,
“There is an interesting feature about the water glass, do you notice it?” the child
will listen carefully, and simply respond with a yes or no. Older children (i.e., between
8 to 10 year old) based their responses on assumptions they had about robots. For
example, if the robot asked “have you ever set a table?” The older children would
respond to the experimenter with comments like, “ Um. . .should I answer?” or “Is it
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going to understand what I say?” In other words, age seemed to influence the “quality
of interaction” where for 4 to 5 year olds response timing was more important than
content, 6 to 8 year olds were more concerned with obedience and “doing things right,”
while 9 to 10 year olds tried to stay within the repertoire available to the robot.

On several occasions, an interesting observation was that children attempt to com-
municate with the robot through the operator, or their parents. This showed the im-
portance of having the operator out of sight to lessen the distraction, and to deter the
robot from becoming the “third wheel.”

6. MULTIMODAL APPROACH TO GENERATING AFFECTIVE INTERACTIONS

This section explores some important design features in robots that may promote af-
fective interaction. In human-human interactions, both verbal and nonverbal cues are
important to fully understand people’s intentions, or grasp the context of the conver-
sation. Similarly, in human-robot interaction, there is a need to explore multimodal
communication from the perspectives of both humans and robots.

6.1. Robots Detecting Humans and Objects

The robot software architecture consists of a collection of interconnected, parallel
modules, which reports perceptual information to the decision-making module that
generates observable behaviors in robots. Important perception modules include face
detection to identify the presence of people (e.g., face pose and gaze detection), turn-
taking cues, and sound localization for multiple speakers in the room. An active visual
attention system is implemented to focus on areas of motion, high intensity, and skin
color.

6.2. Robot Response to Humans

The attention system presented important location-based stimuli so that the robot can
show natural reactions. An example may be glancing at someone who is speaking,
or facing toward the source of a novel sound. Through face detection the robot is
able to look at the human during interaction, and engage him in conversation. In
places where current perception algorithms cannot be applied, the wizard-of-oz control
interface is used to ensure that interaction can proceed successfully [Hauser et al.
2007; Sarvadevabhatla and Ng-Thow-Hing 2009]. The tools are designed so that the
user can operate remotely. The operator is out of sight from the participant to lessen
distraction. This is important in maintaining the belief that the robot is autonomous.
The woz interface allows the operator to directly click on the live video display (a video
feed from robot camera) to identify a target for looking and pointing. To manually
produce smooth movement in head and hand coordination, more than one operator is
needed. Multiple instances can run simultaneously in the woz software, and control
tasks can easily be divided between multiple operators (e.g., one operator controls the
robot’s verbal conversation, while a second operator controls hand motions and looking
behavior). See Figures 9 and 10.

6.3. Gesture Generation

To produce a more natural, lively communication, a multimodal synchronized gesture-
speech model [Ng-Thow-Hing et al. 2010] was developed. The model automatically
selects gestures to perform, based on the content of speech. Speech is analyzed for
word patterns, parts-of-speech, and other semantic tags to produce continuous arm
trajectories that are synchronized as the words are spoken. Gestures are especially
important for robots without facial expressions, as movements act as emotional cues.
Subsequent evaluations of the gesture model show that the addition of gesture modality
can produce different emotional impressions and hence shape the tone of interaction
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Fig. 9. Woz tool enables multiple operators control over the robot.

Fig. 10. Woz interface with panoramic attention.

(see Figure 11). Faster motions tend to have positive associations such as excitement
and happiness, while slower motions depict sadness and fatigue. Figure 12 illustrates
several gesture sequences that are produced automatically by the robot. The continuous
expression of gestures with an active attention system helps maintain a smooth flow of
communication. Such features are important to avoid the phenomenon of “punctuated
stillness” where the robot suddenly stops movement after finishing a sentence, leading
people to wonder if the robot is still working.

7. QUALITY OF ATTENTION IN AFFECTIVE ROBOT-HUMAN INTERACTIONS

The first study showed promising interaction styles for engagement, and interest-
ing patterns that elicit affective behavior. More specifically: (1) cooperative peer-like
interaction style and human-like features led to more oculesic behavior and social en-
gagement, (2) quality of interaction differs with age, revealing children’s preconceived
notions about robots, (3) helped identify important behavioral cues and affective re-
sponses that need to be implemented into the model, (4) changes to the environmental
setup to deter the robot from becoming a “third wheel,” and (5) the possible use of
physiological measures to detect subtle emotional changes in children. These findings
revealed several design implications when automating the decision-making module.
For example, children showed several attention seeking behaviors toward the robot,
but many involved testing the robot rather than communicating with the robot. The
attention system was developed to examine the quality of attention, and the type of
attention. Small-size case studies are ideal for this study to closely observe how the
different attention features in robots influence children’s behavior and engagement.

7.1. Quality of Attention

The second study looked at the quality of attention (e.g., nothing, automatic, and
Wizard-of-Oz) to see if different levels of detection influenced affective behavior (see
Table III). The study also looked at the type of attention, either nonverbal attention
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Fig. 11. Positive and negative associations in relation to gesture speed.

Fig. 12. Examples of gestures generated automatically by robot during speech.
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Table III. Study Design on the Quality of Attention

Non-verbal Attention only Non-verbal and Verbal Attention
(Duck Story) (Pig Story)

Nothing Basic (pre-scripted comments, gestures, movement) same for both duck and pig
Automatic Basic Basic

+Non-verbal automatic attention +Non-verbal automatic attention
(Look in direction where sound
comes, Look, leans in, points when
card is shown)

+Verbal automatic attention (Detects when child stops
talking. Gives generic feedback e.g., Oh, uh huh, I see,
wow)

Woz Basic Basic
+Non-verbal woz attention +Non-verbal woz attention
(Look in direction where sound
comes, Look, leans or point when
card is shown)

+Verbal woz attention (Gives accurate response, and
generic feedback when child talks or asks questions)

(e.g., nodding, looking) or verbal attention (e.g., “ok”, “uh huh”, “I see”) to see if different
responses influenced affective behavior.

7.1.1. Nothing/No Attention. The robot only displays basic prescripted comments and
gestures. There is no active visual attention systems or perceptional information re-
porting to the decision-making module.

7.1.2. Automatic Attention. In addition to the basic pre-scripted comments and gestures,
the visual attention system is active. The robot is autonomous. As the robot interacts
with the child, perceptional information is detected and reported to the decision-making
module, displaying automated verbal attention responses and/or nonverbal attention
responses. Because the detection and responses are automated, the robot’s behavior
and timing are not always accurate.

7.1.3. Wizard-of-Oz Attention. In addition to the basic prescripted comments and ges-
tures, the visual attention system is active. However, human operators control the
robot remotely. As the robot interacts with the child, human operators detect and re-
spond to the child’s behavior without using the decision-making module. The human
operators display accurate verbal attention and/or nonverbal attention responses. The
robot’s attention, accuracy, and response rates are higher.

7.2. Research Method and Design

This small-scale case study on the quality of attention was a repeated-measure, ran-
domized crossover study. This 1 × 3 study design consisted of a between-subjects vari-
able on quality of attention (nothing versus automatic versus Wizard-of-Oz), and a
within-subjects variable on the type of attention (nonverbal attention, verbal atten-
tion). Children were 6 years old, a little older than the first study for longer atten-
tion span and higher concentration level. Children were randomly assigned to one of
three conditions. Within-subjects measures were used to see how participant behav-
ior evolved as more sophisticated attention features were added-on. For example, in
phase 1 of the session, the robot only displayed nonverbal attention. In phase 2 of the
same session the robot displayed both nonverbal attention and verbal attention. The
add-on approach was taken due to our findings from study 1 where behavior measures
decreased over time (even with familiarity and practice). Study 2 examined simple
attention features that may increase behavior and engagement. Both studies were
lengthy interactions compared to average length in HRI with children. A fair amount
of time was setaside for each phase (introduction, phase 1, and phase 2) to see behavior
change over time (e.g., after familiarity and practice).
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Fig. 13. Wizard-of-Oz condition child describing the story of the Three little pigs and the big bad wolf saying,
“I’ll huff and I’ll puff and I’ll blow the house down. . .”.

7.3. Procedure

There were 9 children that engaged in a one-to-robot 30 to 35 minute activity with
Honda’s humanoid robot (e.g., fact exchange, story telling). The cover story was prepar-
ing the robot to visit the zoo. In preparing the robot, the child exchanged facts about
two animals (e.g., duck and pig). Each animal involved two activities: (1) exchanging
information they knew about the animal (e.g., the size, what they eat, how they com-
municate), and (2) telling the robot a well-known story about the animal (i.e., “Ugly
Duckling”, “Three Little Pigs and the Big Bad Wolf”). Talking about animals, and
story telling were familiar activities for children. Attention needed to be a positive
experience (e.g., robot pays attention, and listens to child) than negative (e.g., robot
monitoring or checking on the child). To deter the robot from becoming a “third wheel,”
the human operator(s) were taken out of the picture. Instead, a cartoon character
Alyssa appeared on a nearby computer screen to help guide the child. Picture cards of
ducks and pigs were set aside so the child could use them to aid her conversation (see
Figure 13).

Children were first introduced to Alyssa, a cartoon character on the computer screen.
Alyssa gave a cover story and introduced the robot to the child. Each child engaged
with the robot for two sessions (the first session on the duck, and the second session
on the pig). Each session consisted of two parts (see Table IV). In the first part the
child and robot exchanged information (e.g., the size of the duck, what they eat, how
they communicate, color). Alyssa guided the interaction by making suggestions such
as (“why don’t you share with the robot the size of the duck,” “why don’t you go tell
the robot what you think ducks eat”). The interaction was designed so the child could
offer facts from her prior knowledge about familiar animals. Alyssa suggested different
ways that the child could describe the duck, “You can tell the robot, show the robot with
your hands, or use the duck card and explain”). Alyssa also prepared the child on what
behavior he could expect to see from the robot (“Remember, when the robot likes what
it hears, he may look, move, or ask you some questions”). The robot also provided input
about the animal (“Alyssa told me that ducks are brown”), and occasionally asked
questions (“Are all ducks brown?”). In the second part of the session the child described
a well-known story about the animal to the robot. Alyssa asked the child if she could
tell the story (“I think it would really help the robot understand about ducks if you
tell him a story. Do you know the story of the “Ugly Duckling”? Do you think you can
tell the story to the robot?”). After story telling, the child had the option to take a
short bathroom break. Children then repeated the procedure with the second session
on the pig. When the two sessions (duck and pig) were completed, the robot and Alyssa
thanked the child for coming.
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Table IV. Procedure of Attention Study and Questions Asked in Each Question

Procedure
Introduction Cover Story (Help prepare robot to go to the zoo)

Child introduces self to robot
Session 1: Duck

Part1 Behavioral Non-verbal Attention
Question set1 (BQ1)

Alyssa: Share something you know about a duck?
Robot: What are you showing me?
Robot: What are you going to tell me about the duck?

Behavioral Non-verbal Attention
Question set2 (BQ2)

Alyssa: Describe the size of the duck to robot
Robot: The size of the duck?
Robot: What was the color of the duck in the picture?

Behavioral Non-verbal Attention
Question set3 (BQ3)

Alyssa: Tell the robot what ducks like to eat.
Robot: What do ducks eat?
Robot: How do ducks talk?

Part2 Behavioral Non-verbal Attention
Story Telling (BS)

Alyssa: Tell the robot the story of the ugly duckling?
Robot: Do you want to be the ugly ducking?
Session 2: Pig

Part1 Behavioral Verbal Attention
Question set1 (BVQ1)

Alyssa: Share something you know about a pig?
Robot: What are you showing me?
Robot: What are you going to tell me about the pig?

Behavioral Verbal Attention
Question set2 (BVQ2)

Alyssa: Tell how pigs talk to each other?
Robot: Is that how pigs talk to each other?
Robot: What else do pigs eat?

Behavioral Verbal Attention
Question set3 (BVQ3)

Alyssa: Share the size of the pig?
Robot: Is that the size of the pig?
Robot: Are pigs always running around?

Part2 Behavioral Verbal Attention Story
Telling (BVS)

Alyssa: Tell story of the three little pigs and big bad wolf?
Robot: What kind of house would you build?

7.4. Materials and Measures

There were four measures in the quality of attention study: (1) oculesic behavior mea-
suring the number of times the child made direct eye contact with the robot during the
activities, (2) engagement, meaning the number of incidents where the child makes di-
rect comments toward the robot and length of communication, (3) children’s behavioral
response to story-telling activities, and (4) frequent behaviors seen during the interac-
tion, including gestures, actions, and motions made to the robot (directly or indirectly),
or others (e.g., parents).

7.5. Results

This small case study consisted of 9 children. The findings will be explained by exam-
ining promising trends rather than running rigorous statistical analysis.

7.5.1. Effect of Robotic Features on Children’s Eye-Gaze. A trend was seen in the amount
of eye contact made across the three conditions (woz versus automatic versus nothing).
The woz condition was highest compared to automatic and nothing (see Figure 14). In
part 1 (duck session with nonverbal attention BQ1-BQ3), the woz condition showed
a stable count while the number of cases decreased for the automatic condition. An
increase in direct eye contact was observed as the verbal attention feature was added
in part 2 of the session (pig session with verbal attention BVQ1-BVQ3). The nothing
condition was somewhat flat over the course of part 1 and 2 of the session. Overall, more
eye contact was made in the woz condition, and verbal attention seemed to increase
the engagement level from BQ3 to BVQ1 for both woz and automatic (see Figure 14).

7.5.2. Effect of Robotic Features on Children’s Engagement. Overall length of conversation
was longer for children in the woz condition compared to automatic and nothing (see
Figure 15). The difference increased over time with a sudden jump in part 2 when
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Fig. 14. Average number of direct eye contacts by child to robot.

Fig. 15. Average length of child’s conversation with robot.

Fig. 16. Average number of times child made direct remarks to robot.

verbal attention was added on (pig session). The automatic condition decreased over
time while the nothing condition was low throughout the session.

For the number of times direct remarks were made toward the robot (see Figure 16),
part 1 of the session (duck, nonverbal attention) showed a gradual increase for woz, and
a decrease for automatic. The number of remarks showed an increase in both woz and
automatic as the verbal attention feature was added in part 2. This increase was short,
lived as both conditions showed a decrease. Overall, the woz condition was highest in
the number of times remarks were made toward the robot.

7.5.3. Effect of Robotic Features on Children’s Behavior. In part 1, there was very lit-
tle difference in the number of behavioral incidents across the three conditions
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Fig. 17. Average number of behavioral incidents made by child during session.

Fig. 18. Number of direct eye contact made by child to robot during story telling.

Fig. 19. Number of behavioral incidents made by child during story telling.

(see Figure 17). As verbal attention was added in part 2, the number of incidents
increased. The woz and automatic condition showed a sharp increase, and a slow grad-
ual decrease over time. The nothing condition was flat throughout the session.

7.5.4. Children’s Response Story-Telling Activities. For the story-telling task the child was
asked to tell the story of the “Ugly Duckling” to the robot in part 1 (nonverbal attention)
and the story of the “Three Little Pigs and the Big Bad Wolf” in part 2 (verbal attention)
of the session. The nature of the task was different compared to the information sharing
activity because the child would be taking the role of the storyteller, initiating most
of the conversation. There was an increase in incidents from part 1 to part 2 across
all four measures: eye contact (see Figure 18), behavioral incidents (see Figure 19),
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Fig. 20. Average number of remarks made by child to robot during story telling.

Fig. 21. Average length of child’s conversation during story telling.

number of remarks made (see Figure 20), and the average length of conversations (see
Figure 21). Overall, woz had the highest number of incidents across the two sessions
(part 1 and part 2). The incidents increased for woz and automatic (more so for woz)
when verbal attention was added. There was no change (if not a slight decrease) for
the nothing condition across all four measures.

7.5.5. Frequent Behaviors Seen During Engagement. In general, there was more direct
and indirect behaviors made toward the robot, with very little behavior made toward
others (i.e., experimenter and/or parents). By placing Alyssa as a guide, and taking the
experimenter/operator out of sight, children talked more directly to the robot. Figure 22
shows: (1) the total number of behavioral incidents across conditions, (2) which number
of behavioral incidents were targeted directly at the robot, indirectly to self or robot,
or addressed to others, and (3) the most frequent behaviors seen. Table V gives the
description/example of each of the codes. The “X” in the figure and table refers to all
other nonfrequent behaviors. Incidents targeted directly at the robot mostly involved
“checking behaviors (CH)” and “explain (XP)” behaviors. This reflects the task involved
in the session “the child checking to see if the robot is listening,” “checking to see how
robot will respond to the child’s information/fact,” and explaining to the robot what
he/she knows about the duck/pig (e.g., size of the pig)”. For incidents made indirectly to
self/robot, frequent behaviors involved “Looking Around (LA)”, “Following Instruction
(FI)”, “Full Attention (FA)”.
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Fig. 22. Most frequent behavior seen by child during the session.

A slight variation was seen across conditions. Looking Around (LA) was most fre-
quent in the woz condition, and Make Inference (IN) the most frequent in the automatic
condition. This may be due to the wide range of responses and interpretation that can be
made from the robot’s gesture/movement in the automatic condition. Many of the indi-
rect response involved the child thinking or self-reflecting following a response from the
robot. Often children’s eyes wandered when thinking how to respond, or explain. Chil-
dren also quietly mouthed or repeated what the robot said to think over the information
exchanged. There were fewer behavioral incidents made toward “others.” Most involved
Checking (CH), Following Instructions (FI), External Referrals (ER), or Parental Re-
ferrals (PR) where children relied on external approval/confirmation/clarification from
parents or experimenters.

Looking further into the data, Figures 23, 24, and 25 show whether the number of
behavioral incidents and their targets (direct, indirect, and other) differ over time (or
as the session progresses) and across conditions. There was little difference in part 1 of
the session (duck, nonverbal attention), but the number of incidents increased in the
latter half when part 2 (pig, verbal attention) was added on as a feature. Across all three
conditions, woz had the highest number of behavioral incidents. Overall, there were
slightly more indirect than direct behavioral incidents. This may be due to the nature
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Table V. Description of Frequent Behavior

of the task that involved children sharing their own knowledge of a familiar animal,
and explaining/teaching facts to the robot. Initially the hypothesis was that “other”
referrals would be more frequent in the beginning of the session than later. It turns
out that the number of behaviors targeted at others did not differ much throughout the
session as well as across conditions.

Most results across the five measures showed that the woz condition elicited more
affective behavior and engagement, followed by automatic and nothing. The difference
was most apparent when the verbal attention feature was added on to the robot (part
2, BVQ1-BVQ3). In some cases, there was little difference across conditions until this
additional feature was added. Nonverbal attention may be difficult for young children
to notice. A similar but greater increase was seen for the story-telling activity, when
verbal attention was added. However, its important to note that automatic nonverbal
attention did similarly well as woz nonverbal attention when the interaction was short.
The benefit of woz over automatic was seen over time. A simplified full-scale study
would definitely be the next step. A subtracting features study could be run to balance
with the large-scale add-on study.
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Fig. 23. Average number of behavioral incidents by child in woz condition.

Fig. 24. Average number of behavioral incidents by child in automatic condition.

Fig. 25. Average number of behavioral incidents by child in nothing condition.

8. TOOL DEVELOPMENT FOR MULTIMODAL ANALYSIS

The next two sections introduce tools that were developed to automate analysis of head
motion and body movement. Recordings of extended-duration interactions produce a
large amount of data. Such analysis usually involves manual annotation (coding) of
relevant events in the recording. Typical annotations are done frame-by-frame for video
and short segments of time for audio. Often several passes over the same data have to
be made by multiple coders for inter-rater reliability. The annotation process is usually
extremely labor intensive and error prone. If the observer is not explicitly looking at
the right time frame or the right point of view, crucial interactions can be missed.

Multiple video streams from different viewpoints were recorded in the two studies for
this reason. There was a need to create tools that enable multimodal analysis, eliminate
the laborious coding tasks from each camera angle, and a tool that applies computer
vision algorithms to automate the detection and documentation of microbehavior oc-
currences. To make sure that no false positives or false negatives occur, performance
comparisons of these automatic methods were needed [Dautenhahn and Werry 2002].
The SAMA (Subject Automated Monitoring and Analysis) system was designed to au-
tomate analysis of head motion and body movement. In SAMA, the multiview camera
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Fig. 26. Screenshot of Anvil synchronizing multiple viewpoint videos, physiological annotations, and auto-
matically generated SAMA annotations.

data could be processed to obtain head pose and gaze-related annotations. The basic
design goal of using SAMA along with Anvil (free video annotation tool for multilayered
annotation based on a user-defined coding scheme) was to analyze the sensor data (in
particular, camera information) for cues and patterns in the human-robot interaction
(see Figure 26). For example, when looking for instances where the subject turned away
from the humanoid, or instances where the robot and subject were speaking simulta-
neously, SAMA analyzes the multiview video data and outputs a semantic annotation
tag set for each time slice. For each time instance, it simultaneously processes the
corresponding frame from each of the 5 cameras (not including the back-up camera-6
and -7). For each frame, various pose-related face properties such as head-roll, tilt,
and pan were estimated. The relative positions of the camera viewpoints (front, profile,
side, etc.) were also extracted. The face properties from all the viewpoints along with
viewpoint information were combined and processed using a rule base, which deter-
mined the final semantic tag set for that time instant. In this way, the entire set of
videos associated with an interaction episode can be coded with information on the
current gaze location of the subject [Sarvadevabhatla et al. 2010]. The analysis from
SAMA provided useful cues of where to focus on in the video through the indication of
low-level gaze cues and their transitions. For this reason, Anvil was an ideal environ-
ment for analysis. By combining the analysis from SAMA on video data with data from
other sensors (e.g., audio, physiological measures), there was an opportunity to exam-
ine unobserved long-range relationships between interaction elements. By combining
information from multiple viewpoints, SAMA could provide informative tagging that
was far more informative than from a single viewpoint.

9. EXPLORATIONS IN PHYSIOLOGICAL MEASUREMENTS IN MULTIMODAL ANALYSIS

Although video and audio analysis of interactions between children and robots could
reveal emotional responses, children often found it hard to express their emotions in
unfamiliar situations. Some children could choose to hide their emotional displays out
of fear or embarrassment. Sometimes direct physiological measurements could help
reveal subtle triggers from interaction or indicate a general level of arousal. Sensors
were tested to examine the potential for future large-scale usage.

One particular challenge of using skin conductance sensors with children was their
tendency to move around during interaction. The more engaging the interaction, the
more active the participant was. This ruled out wired skin conductance sensors where
electrodes around fingers suffer loss of contact with movement. The wireless Q sensors

ACM Transactions on Interactive Intelligent Systems, Vol. 1, No. 1, Article 5, Pub. date: October 2011.



Multimodal Approach to Affective Human-Robot Interaction Design with Children 5:25

Fig. 27. Affectiva Q sensor for wireless skin conductance measurement.

Fig. 28. Software synchronizes skin conductance signals with video recordings of sessions.

(see Figure 27) comprised an ideal device. Recently introduced by Affectiva, Inc. [Poh
et al. 2010], the work was based on research by Picard [1997] on affective computing.
These sensors were attached to palm straps or wristbands that allowed data recording
from the child’s arm during interaction. This allowed children to move freely, gesture,
and manipulate objects during interactions. The device also included temperature
sensors and accelerometers to measure hand motions. Skin conductance was sampled
at 32 Hz and stored in a small micro SD memory card (within the device) during the
session.

9.1. Calibration and Postprocessing

In order to synchronize the physiological signal with recorded video, subjects were
asked to perform an exercise where they raised their hands up and down as fast as they
could. The accelerometer in the sensor helped locate the position in the physiological
data and was synchronized with the video (see Figure 28). In a later version of the
sensor, we were able to directly synchronize the sensor’s time with a host computer. The
skin conductance data was measured in microsiemens and filtered to remove noise and
motion artifacts (that appeared as high-frequency spikes). A fourth-order butterworth
low-pass filter was applied with a cutoff frequency of .00625 Hz. The filtered signal was
applied to the Matlab detrend filter which removed the mean value from the sampled
vector to remove DC drift in the sensors. The signal was more reliable once the sensors
had warmed to body temperature, and perspiration appeared at contact interface. For
baseline, it was important to obtain a signal that was recorded after the electrodes
had been warmed to body temperature. A portion of the signal with relatively little
activity prior to the session was selected as the baseline whose mean was removed from
the signal. Final range normalization was done to map the minimum and maximum
conductance values to 0 and 1, respectively (see Figure 29).
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Fig. 29. Skin conductance response peaks denoted with red circles.

9.2. SCR Detection

From the normalized signal, several measures were obtained. All Skin Conductance
Response (SCR) peaks and valleys in the filtered signal were found with time stamps.
The distance of the rise between a peak and its previous valley was also measured.
From these measurements, we partitioned the SCR peaks according to when they
occurred during the phase of interaction: introduction, BQ1, BQ2, BQ3, BS, BVQ1,
BVQ2, BVQ3, BVS. The SCR peaks were tallied to compute the mean and standard
error of the mean for each phase.

9.3. GSR Analysis

Since the skin conductance data for each subject was normalized, performing intersub-
ject comparisons with physiological skin conductance data was problematic because of
inherent individual differences in baseline arousal. Even if the baseline was subtracted
from the raw data, individual’s skin conductance changes may occur at different rates.
Normalizing the data to a specific range may help accentuate the SCR peaks for an
individual, but removes relative magnitude information between subjects, making di-
rect comparisons impossible. Consequently, the challenge lies in how to compare or
aggregate physiological information between subjects.

Since the length of interaction (differing by subjects) may influence the number of
SCR events, the average number of SCR events per minute was computed to normalize
the effects of duration. Since all participants experienced the same experimental pro-
cedure, the time series were partitioned according to interaction event intervals (i.e.,
phase of interaction: introduction, BQ1, BQ2, BQ3, BS, BVQ1, BVQ2, BVQ3, BVS).
This allowed us to compare the arousal activity across all subjects during the same
situation. Arousal activity was estimated by counting the number of SCR (skin con-
ductance response) events that occurred during the time interval. We found that in
more responsive conditions (i.e., woz, automatic) interactions were prolonged with the
child, requiring the need to normalize the results to eliminate the time bias. For each
interactive interval, the total number of SCR events within that interval was divided
by the total duration of the interval in minutes to produce the average number of SCR
events per minute for each interval. Due to technical difficulties, physiological data
could only be retrieved from 6 children out of the total 9 in the study. Preliminary
findings showed there was a potential trend that woz and automatic conditions pro-
duced a higher number of SCR incidents than the nothing condition (see Figure 30).
In this early trial measurement we did see a promising trend of increased average of
SCR events ranging from 3.87 events for nothing conditions to 4.56 events for auto-
matic, and 6.00 events for the woz condition. As a small sample size, no claims could
be made without a larger sample. Initial indications showed that skin conductance
could potentially be useful for characterizing different levels of arousal in subjects
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Fig. 30. Average number of SCR peaks per minute by session.

during interaction. Further analysis of the video and audio with skin conductance is
currently being processed to identify potential triggers in producing affective response.
The study plans to make changes based on the findings, and run a larger full-scale
study to confirm the overall trend.

10. GENERAL OVERALL DISCUSSION

The two studies (interaction style study and quality of attention study) involved chil-
dren’s interaction with life-sized humanoid robots. One challenge in our research in-
volved exploring how humans can become part of the design, and part of the system.
Two approaches (perspective of robot and perspective of humans) seemed critical in
designing and developing specific features in robots. Studies were used to test what
features contributed to affective behavior and prolonged engagement. More specifically,
we needed to know what robots need to detect from humans, and how robots should
respond to humans. The article focused on measuring the influence of these features
on affective behavior and engagement.

The strategy had been to produce a suite of hardware and software tools to fit a
natural environment. By enabling comprehensive recordings of multiple modalities of
interaction, and understanding how humans respond to different behavioral stimuli,
the study hoped to achieve childerns’ affective behavior and engagement. Our software
framework allowed both automatic and manual Wizard-of-Oz interaction models to be
created, and provided the researcher with a wide selection of controls for designing
different interactive conditions.

The development of automated comprehensive data logging and multimodal analysis
assisted researchers in the study of extended human-robot interaction, and revealed
long-term trends and patterns that were not observable in short exchanges. One large
challenge was the subsequent analysis of all the collected data. Although some auto-
matic computer vision methods could be used to automatically categorize face poses
and facial expressions, these methods were susceptible to large error rates, especially
when facial features were small in the camera images. Still there was much to be done
manually by humans for video coding verbal and nonverbal cues.

11. FUTURE WORK

The studies showed that even though the automatic condition did not perform as well as
the woz condition, the attention feature still influenced children’s affective behavior and
engagement. This implies that we can design more natural and affective interactions
with robots, especially in the construction of autonomous behavior models with better
human detection and response mechanisms. Another important feature is creating
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robust speech recognitions for young children, and engaging the robot in a timely
manner. There is definitely a need to run a larger study with more participants to design
and evaluate an affective decision-making module. For now, interactions may be most
affective when interactions involve a peer-like robot designed around a familiar script,
and an attention feature that includes both nonverbal and verbal attention. Until
robots have the intelligence to flexibly respond to young children’s interactive bids,
following a well-known script or protocol (e.g., turn taking, story telling, playing house)
may help elicit affection through prior knowledge and familiarity. The set of findings
from our small-scale exploratory study has brought about useful design implications.

As future work, we would also like to analyze the sequence of events in the human-
robot interactions (both children and adult users), to produce better predictive behavior
models. This may help anticipate the user’s response or change in emotions, and pro-
duce more pleasant interactions. A good prediction model can allow a robot to steer
a conversation toward a desirable goal or help assist users when navigating through
an interactive task. It is important for the robot to have early indications of whether
the user is engaged, afraid, or bored. A robot can then decide to dynamically modify
its own style of communication while still attempting to fulfill the task goals. A possi-
ble application is designing robots for educational purposes as a peer-learner. A robot
with good prediction, detection, and feedback models can provide the learner with good
scaffolding and motivation.

12. SUMMARY

The two studies attempted to see if specific design features, that is, in robots influ-
ence children’s affective behavior and social engagement. The first study looked at two
features, that is, interaction styles (e.g., lecture style, cooperative, self-directed) and
general features (e.g., human-like voice, monotone robot-like voice) to see if different
responses influence affective behavior. Results found that cooperative interaction style
and human-like voice invited more oculesic behavior and elicited more comments from
children during interaction. The second study looked at the quality of attention (e.g.,
nothing/no attention, automatic attention, and Wizard-of-Oz) to see if different levels
of detection influence affective behavior. The study also looked at the type of atten-
tion, nonverbal attention, and verbal attention, to see if different responses influence
affective behavior. The findings revealed that woz and automatic detection and verbal
attention responses increased children’s oculesic behavior, length of conversation, and
physiological responses. The findings will be applied to design better behavior and in-
teraction models. There is much to be learned about the human partner in relation to
the technical partner. In order to reveal new insights to the role robots play in human
relationships, robots must accurately detect human behavior and the experience hu-
mans bring with them. This combined with careful selection of technology may unfold
successful engagement and affective human-robot interaction.
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