How to Integrate Cough Evaluation and Cough Skill Training into Dysphagia Management



James C. Borders, PhD/CCC-SLP Emilie Lowell, MS/CCC-SLP Katya Villarreal, MS/CCC-SLP Michelle S. Troche, PhD/CCC-SLP Communication Sciences and Disorders Program Department of Biobehavioral Studies Teachers College, Columbia University

Laboratory for the Study of Upper Airway Dysfunction TEACHERS COLLEGE, COLUMBIA UNIVERSITY

# Disclosures

- James Borders
  - Salary: Teachers College, Columbia University
- Emilie Lowell Fellowship: Teachers College, Columbia University
- Katya Villareal

Fellowship: Teachers College, Columbia University

Michelle Troche

Salary: Teachers College, Columbia University Grant support: National Institutes of Health, Michael J Fox Foundation, National Ataxia Foundation, CurePSP Foundation Royalties: MedBridge Inc ASHA registration waiver: ASHA

### Laboratory for the Study of Upper Airway Dysfunction





Research aimed at improving health outcomes and quality of life associated with disorders of swallowing, cough, and speech production.



# Learning Objectives

- Describe the theoretical underpinnings and rationale for cough as an important airway protective behavior
- Provide practical approaches to evaluate sensory and motor aspects of cough in clinical practice
- Illustrate the clinical implementation evaluation and treatment of cough skill training in case presentations

# Have you or someone (SLP) you know ever....

- Asked a patient to cough during a cranial nerve exam.
- Made an assumption based on a cough (or absence of cough) on a clinical swallowing evaluation.
- Used the penetration-aspiration scale.
- Prescribed a 'cough' during meals or after liquids.

# Why do we care about these things?

### We care about whether our patient can protect their airway



#### **PAS Score**

Description

Material does not enter the airway

Material enters the airway, remains above the vocal folds, and is ejected from the airway Material enters the airway, remains above the vocal folds, and is not ejected from the airway Material enters the airway, contacts the vocal folds, and is ejected from the airway Material enters the airway, contacts the vocal folds, and is not ejected from the airway Material enters the airway, passes below the vocal folds, and is ejected into the larynx or out of the airway Material enters the airway, passes below the vocal folds, and is not ejected from the trachea despite effort Material enters the airway, passes below the vocal folds, and is not ejected from the trachea despite effort Material enters the airway, passes below the vocal folds, and no effort is made to eject

### Without knowing we KNOW that swallowing and cough disorders co-exist

Dysphagia (2016) 31:757-764 DOI 10.1007/s00455-016-9734-6



RESEARCH ARTICLE

ORIGINAL PAPER

### **Reflex Cough and Disease Duration as Predictors of Swallowing Dysfunction in Parkinson's Disease**

Michelle S. Troche<sup>1</sup> · Beate Schumann<sup>2</sup> · Alexandra E. Brandimore<sup>1</sup> ·

The Laryngoscope © 2022 The American Laryngological, Rhinological and Otological Society, Inc.

#### Voluntary Cough Testing as a Clinical Indicator of Air in Cervical Spinal Cord Injury

Laura Pitts, PhD, CCC-SLP BCS-S <sup>(i)</sup>; Valerie K. Hamilton, MS, CCC-SLP <sup>(i)</sup>; Erir Stephanie Watts, PhD, CCC-SLP <sup>(i)</sup>; Leora R. Cherney, PhD, CCC-SLP E

#### Voluntary Cough and Clinical Swallow Function ir with Spastic Cerebral Palsy and Healthy Controls

Avinash Mishra<sup>1</sup> · Georgia A. Malandraki<sup>2</sup> · Justine J. Sheppard<sup>3</sup> · Andrew Michelle S. Troche<sup>3</sup>

#### Sensorimotor Cough Dysfunction Is Prevalent and Pervasive in Progressive Supranuclear Palsy

James C. Borders, MS, CCC-SLP,<sup>1</sup> Jordanna S. Sevitz, MS, CCC-SLP,<sup>1</sup> James A. Curtis, PhD, CCC-SLP, BCS-S,<sup>1</sup> Nora Vanegas-Arroyave, MD,<sup>2</sup> and Michelle S. Troche, PhD, CCC-SLP<sup>1\*</sup>

> Jysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA f Neurology, Baylor College of Medicine, Houston, Texas, USA

Dysphagia (2016) 31:383-390 DOI 10.1007/s00455-015-9687-1

ORIGINAL ARTICLE



Voluntary Cough Airflow Differentiates Safe Versus Unsafe Swallowing in Amyotrophic Lateral Sclerosis

Emily K. Plowman<sup>1,2</sup> · Stephanie A. Watts<sup>2,3</sup> · Raele Robison<sup>1,2</sup> · Lauren Tabor<sup>1,2</sup> · Charles Dion<sup>3</sup> · Joy Gaziano<sup>3</sup> · Tuan Vu<sup>4</sup> · Clifton Gooch<sup>4</sup>

Cough Strength and Expiratory Force in Aspirating and Nonaspirating Postradiation Head and Neck Cancer Survivors

Katherine A. Hutcheson, PhD <sup>(b)</sup>; Martha P. Barrow, MPH; Carla L. Warneke, MS; Yiqun Wang, MA; George Eapen, MD; Stephen Y. Lai, MD, PhD; Denise A. Barringer, MS; Emily K. Plowman, PhD; Jan S. Lewin, PhD

### And we know that (an effective) cough is good for clearing the airway - and important for preventing aspiration pneumonia



**Research** letter

Higher cough flow is associated with lower risk of pneumonia in acute stroke FREE

# PDF Supplementa

#### <sup>7</sup> Morbidity in Patients

Metrics

#### with Dysphagia

Bianchi, Carlo MD; Baiardi, Paola PhD; Khirani, Sonia PhD; Cantarella, Giovanna MD

Author Information ⊗

American Journal of Physical Medicine & Rehabilitation 91(9):p 783-788, September 2012. | DOI: 10.1097/PHM.0b013e3182556701

Translational Stroke Research (2019) 10:36-43 https://doi.org/10.1007/s12975-018-0625-z

**ORIGINAL ARTICLE** 



The Dysphagia in Stroke Protocol Reduces Aspiration Pneumonia in Patients with Dysphagia Following Acute Stroke: a Clinical Audit

Sarah E. Perry<sup>1,2</sup> · Anna Miles<sup>3</sup> · John N. Fink<sup>4</sup> · Maggie-Lee Huckabee<sup>1</sup>

Received: 10 January 2018 / Revised: 7 February 2018 / A ccepted: © Springer Science+Business Media, LLC, part of Springer Nature Cough Strength Is an Indicator of Aspiration Risk When Restarting Food Intake in Elderly Subjects With Community-Acquired Pneumonia

Yasunari Sakai, Masayoshi Ohira, and Yoshiharu Yokokawa

So if we know all of this....

### How can we do better?

- Many clinicians who treat individuals with dysphagia report limited education related to cough
- Over 97% SLPs in a recent survey reported an interest in learning more about cough assessment.



Let the Cough 101 course begin....

### Airway Protection: A Continuum of Behaviors



### Prevention





(Troche, Brandimore, Godoy, & Hegland, 2014)

### **A Framework to Understand Airway Protection**



# Cough is....

- A mechanism of airway protection
- A sensorimotor behavior which serves to protect the pulmonary system by generating expiratory airflows that create 'scrubbing' action, removing material from the airway
- Forced expiratory maneuver, usually against a closed glottis, associated with a characteristic sound

# In order to generate high airflow velocities during cough you need four things:

- Inspiration
- Adduction of vocal folds/closure of the laryngeal vestibule
- Rapid opening of the vocal folds and larynx
- Forced expiration



# Types of cough (and their unique importance) Cough **Voluntary Cough Reflex Cough**

# How might DYSTUSSIA manifest in my patients?

# Dystussia is....

- Disordered or pathologic cough
- Related terms
  - Eutussia Normal cough
  - Hypertussia Too much cough
  - Hypotussia Too little cough
  - Atussia absent cough

# How does DYStussia manifest in people with dysphagia?



Figure from Armstrong & Okun 2020

- Higher cough thresholds
- Blunted urge-to-cough
- Disorganized/reduced voluntary control of cough
- Reduced peripheral strength
- Increased variability in cough performance



#### Framework from: Troche et al, 2014

### Dysphagia and Dystussia commonly (always?) co-exists!

Dysphagia (2016) 31:757-764 DOI 10.1007/s00455-016-9734-6 CrossMark

#### RESEARCH ARTICLE

ORIGINAL PAPER

### Reflex Cough and Disease Duration as Predictors of Swallowing Dysfunction in Parkinson's Disease

Michelle S. Troche<sup>1</sup> · Beate Schumann<sup>2</sup> · Alexandra E. Brandimore<sup>1</sup> ·

The Laryngoscope © 2022 The American Laryngological, Rhinological and Otological Society, Inc.

Voluntary Cough Testing as a Clinical Indicator of Air in Cervical Spinal Cord Injury

Laura Pitts, PhD, CCC-SLP BCS-S <sup>©</sup>; Valerie K. Hamilton, MS, CCC-SLP <sup>©</sup>; Erir Stephanie Watts, PhD, CCC-SLP <sup>©</sup>; Leora R. Cherney, PhD, CCC-SLP E

#### Voluntary Cough and Clinical Swallow Function ir with Spastic Cerebral Palsy and Healthy Controls

Avinash Mishra<sup>1</sup> · Georgia A. Malandraki<sup>2</sup> · Justine J. Sheppard<sup>3</sup> · Andrew Michelle S. Troche<sup>3</sup>

Cough Strength and Expiratory Force in Aspirating and Nonaspirating Postradiation Head and Neck Cancer Survivors

Charles Dion3 · Joy Gaziano3 · Tuan Vu4 · Clifton Gooch4

Swallowing in Amyotrophic Lateral Sclerosis

Katherine A. Hutcheson, PhD <sup>(b)</sup>; Martha P. Barrow, MPH; Carla L. Warneke, MS; Yiqun Wang, MA; George Eapen, MD; Stephen Y. Lai, MD, PhD; Denise A. Barringer, MS; Emily K. Plowman, PhD; Jan S. Lewin, PhD

Emily K. Plowman<sup>1,2</sup> · Stephanie A. Watts<sup>2,3</sup> · Raele Robison<sup>1,2</sup> · Lauren Tabor<sup>1,2</sup> ·

#### Sensorimotor Cough Dysfunction Is Prevalent and Pervasive in Progressive Supranuclear Palsy

James C. Borders, MS, CCC-SLP,<sup>1</sup> <sup>[D]</sup> Jordanna S. Sevitz, MS, CCC-SLP,<sup>1</sup> James A. Curtis, PhD, CCC-SLP, BCS-S,<sup>1</sup> Nora Vanegas-Arroyave, MD,<sup>2</sup> and Michelle S. Troche, PhD, CCC-SLP<sup>1\*</sup>

Voluntary Cough Airflow Differentiates Safe Versus Unsafe

)ysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York, USA f Neurology, Baylor College of Medicine, Houston, Texas, USA

Dysphagia (2016) 31:383-390 DOI 10.1007/s00455-015-9687-1

ORIGINAL ARTICLE

•



# Cough Evaluation: A Step-by-Step Tutorial

#### **Gold Standard**

Spirometry +/-Tussigenic Stimuli

### **Clinical Implementation**

Handheld Peak Flow Meters

Handheld Nebulizers

Auditory-Perceptual

# Spirometry: the Gold Standard



### Equipment

- Pneumotachograph coupled with a facemask
  - Connected to a computer to visualize airflow during breathing and coughing



Pneumotachograph







Filter



Full setup

## **Cough Measurement with Spirometry**



**Cough Inspired Volume (CIV)** Amount of air inspired before coughing

#### **Compression Phase Duration (CPD)**

Time from end of inspiration to beginning of expiratory phase

#### **Peak Expiratory Flow Rate (PEFR)**

Peak airflow during the expiratory phase of the cough



### What can PEFR predict?

Swallowing safety deficits in people with dysphagia

 PEFR < 5.24 L/s had 100% specificity to detect aspiration on instrumental swallowing evaluation (Pitts et al., 2010)

# Ability to clear the airway on an instrumental swallowing evaluation

 PEFR of 5 L/s predicted 80% of aspiration expelled from subglottis (Borders et al., 2021)

### Cough Measurement



**Cough Inspired Volume (CIV)** Amount of air inspired before coughing

#### **Compression Phase Duration (CPD)**

Time from end of inspiration to beginning of expiratory phase

#### Peak Expiratory Flow Rate (PEFR)

Peak airflow during the expiratory phase of the cough

### Please rate your urge-tocough

| 0 | None at all       |
|---|-------------------|
| 1 | Very slight       |
| 2 | Slight            |
| 3 | Moderate          |
| 4 | Somewhat severe   |
| 5 | Severe (heavy)    |
| 6 |                   |
| 7 | Very, very severe |
| 8 |                   |

severe

9

10

(almost maximal)

# Voluntary Cough Testing



### Step-by-Step Guide

- Hold the facemask tightly against face
- Provide instructions with a model



- Maintain tight seal with facemask during coughing
- Hold in place for 1 -2 seconds after coughing
- Remove facemask

# Spirometry

### Instructions

- Single Voluntary Cough
  - Elicits one strong cough
  - Ideal for clearing material from the *upper* airway
  - Can be a stronger cough than sequential







# Voluntary Cough Testing: Interpretation

### Single



Peak Flow: 1.12 L/s Cough Inspired Volume: -0.10 L **Cough Expired Volume: 0.16 L Compression Phase Duration: 0.45 s Clinical Takeaways** High likelihood of airway invasion on instrumental swallowing evaluation

Poor airway clearance of aspiration

Pitts et al. (2010); Borders & Troche (2021)

# Spirometry

### Instructions

"Cough like something went down the wrong tube"

- Sequential Voluntary Cough
  - Imitates cough response to aspiration
  - Elicits multiple coughs
  - Clear material from the *lower* airway



# Moving onto... Reflex Cough Testing

### Delivery of sensory stimulus on inhalation

╋





Nebulizer

### Dosimeter

### Continuous delivery of sensory stimulus



Nebulizer

#### e.g., Miles et al. (2013)

 Protocol improves predictive value of swallowing screens and reduces pneumonia and mortality rates.

#### Considerations

- Unable to randomize dosages
- Difficult to assess urgeto-cough



# Reflex Cough Testing

|                                         | Capsaicin                                                                          | Citric Acid                                                             | <b>Distilled Water</b> |
|-----------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------|
| Sensory receptors                       | Stimulates airway<br>receptors that mediate<br>coughing to prolonged<br>irritation | Stimulates laryngeal<br>receptors involved in<br>coughing to aspiration | Poorly defined         |
| Reproducibility after repeated exposure | Good                                                                               | Poor                                                                    | Poor                   |
| Clinical implementation                 | Difficult                                                                          | Easy                                                                    | Easiest                |
| Potential adverse<br>effects            | Allergy                                                                            | Tachyphylaxis                                                           | Bronchoconstriction    |

e.g., Wallace et al. (2019, 2022); Ohno et al. (2022); Hegland et al. (2016); Mazzone et al. (2011); Dicpinigaitis & Alva (2005)

# **Reflex Cough Testing**



Step-by-Step Guide

- Confirm no allergy to capsaicin
- Randomize order of different amounts of capsaicin
  - 0  $\mu M,$  50  $\mu M,$  100  $\mu M,$  200  $\mu M$

# **Reflex Cough Testing**

### Step-by-Step Guide

- Hold the facemask tightly against face
- Provide instructions

"Relax with the facemask in place and cough if you need to"

- Hold facemask in place after presentation of stimulus and remove facemask
- Wait at least 30 seconds if no immediate cough response
- Ask to rate urge-to-cough and take a sip of water







# **Reflex Cough Testing: Interpretation**

### 200µM Capsaicin



Produced 5 reflexive coughs with a peak flow of 2.85 L/s

### **Clinical Takeaways**

Adequate cough response to capsaicin Urge-to-cough rating of 9 Reduced cough strength



# Reflex Cough Testing: Interpretation

### 200µM Capsaicin



No reflexive cough response to a high dose of capsaicin

### **Clinical Takeaways**

No cough motor response to high dose of capsaicin

Urge-to-cough rating was low

May indicate inability to detect and cough in response to airway invasion



# Spirometry: the Gold Standard

Benefits

- High precision and validity
- Measure timing, volume, and strength of cough

Drawbacks

- High cost
- Lack of portability

# What can I use to evaluate cough today?

## Voluntary Cough Testing

### Sequential

"Cough like something went down the wrong tube"

### Single

"Cough hard one time"

### Analog



- Number of coughs
- Cough strength



- Number of coughs
- Cough strength
- Cough expired volume

Silverman et al. (2014); Tabor-Gray et al. (2019)

## Voluntary Cough Testing

## Sequential

"Cough like something went down the wrong tube"

Single

"Cough hard one time"

### Analog





| Device  | Pros                                                                                                     | Cons                                                                    |
|---------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Analog  | <ul> <li>Affordable (~ \$20)</li> <li>Multi-use with filter and facemask</li> </ul>                      | <ul> <li>Only measures cough<br/>strength</li> </ul>                    |
| Digital | <ul> <li>Monitors adherence</li> <li>Measures CEV</li> <li>Multi-use with filter and facemask</li> </ul> | <ul> <li>Expensive (\$50)</li> <li>Requires software program</li> </ul> |

### **Reflex Cough Testing**

- Handheld nebulizer
  - Measures presence and number of coughs to sensory stimulus
  - Affordable (~ \$30)

## Instructions

"Relax with the device in your mouth. Cough if you need to."

- Keep device in place for 1 minute or until patient produces two coughs.
- Rate urge-to-cough



Hegland et al., 2016

**Reflex Cough Testing** 

• Handheld nebulizer

## **Clinical Takeaways**

- Absent motor response to sensory stimuli
- No urge-to-cough

### **Reflex Cough Testing**

Handheld nebulizer

### Setup with Handheld Peak Flow



- Connect handheld peak flow meter with a t-tube to facemask and handheld nebulizer
- Allows for additional measurement of cough strength

Curtis et al. (2020)

## Auditory-Perceptual Cough Assessment

- Most SLPs include auditoryperceptual assessments of cough in clinical swallowing evaluations
- Emerging evidence...
  - Raters can be reliable with training
  - Unknown validity
    - Some evidence that perceptual characteristics are associated with objective cough outcomes

| Table 1: Definitions of Cough Descriptors |                                                                                                                               |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
| Descriptors                               | Definitions                                                                                                                   |  |  |
| Quality                                   |                                                                                                                               |  |  |
| Strength                                  | Perceived force and loudness of expired airflow, taking into consideration distance from the sound source                     |  |  |
| Crispness                                 | Perception of an abrupt (as opposed to gradual) and distinct pop of expired airflow at the onset of the expulsive cough phase |  |  |
| Voicing                                   | Perception of vocal fold vibration during the expulsive cough phase                                                           |  |  |
| Strain                                    | Perception of excessive vocal effort (hyperfunction), when voicing is present                                                 |  |  |
| Duration                                  | Length of time of the expiratory phase of cough                                                                               |  |  |
| Effectiveness                             | Perceived effectiveness at clearing material from the airway                                                                  |  |  |
| Normality                                 | How normal (as opposed to abnormal) the expiratory maneuver sounds                                                            |  |  |
| Coordination                              | How coordinated (as opposed to discoordinated) the expiratory maneuver sounds                                                 |  |  |

#### Curtis et al. (2023); Laciuga et al. (2016)



## Auditory-Perceptual Cough Assessment

- Number and type of coughs
  - Cough
  - Throat clear
  - Huff
- Quality of the cough
  - Crispness

### Rated from 0-100

Normal



Mild-to-Moderate



Severe



# Auditory-Perceptual Cough Assessment

- Number and type of coughs
  - Cough
  - Throat clear
  - Huff
- Quality of the cough
  - Crispness
  - Duration

Rated from 0-100

Short



Long



Curtis et al. (2023)



(Troche, Brandimore, Godoy, & Hegland, 2014)





(Troche, Brandimore, Godoy, & Hegland, 2014)

## People with dysphagia can up-regulate voluntary and reflex cough function despite a blunted perception of cough-inducing stimuli





(Brandimore et al., 2017; Hegland et al., 2012; Troche et al., 2014)

## Treatments: Sensorimotor Training for Airway Protection (smTAP)

### Sensorimotor Skill-based Paradigm

Key features:

- Salient context for cough execution
  - Emphasis on urge-to-cough
- Salient verbal cue: "cough hard"
- Salient visual cues for cough airflow:
  - Target set at 25% above baseline cough PEFR
  - Real-time biofeedback of cough PEFR



(Brandimore et al., 2017; Hegland et al., 2012; Troche et al., 2014; Troche et al., 2022)

## Home Training Program: Sensorimotor Training in Airway Protection (smTAP)



x 5 weeks

1 hour

25 coughs 25 coughs 25 coughs 25 coughs

### RESEARCH ARTICLE

### Rehabilitating Cough Dysfunction in Parkinson's Disease: A Randomized Controlled Trial

Michelle S. Troche, PhD, CCC-SLP,<sup>1,2\*</sup> James A. Curtis, PhD, CCC-SLP,<sup>1</sup> Jordanna S. Sevitz, MS, CCC-SLP,<sup>1</sup> Avery E. Dakin, MS, CCC-SLP,<sup>1</sup> Sarah E. Perry, PhD, CCC-SLP,<sup>3,4,5</sup> James C. Borders, MS, CCC-SLP,<sup>1</sup> Alessandro A. Grande, MPhil,<sup>6</sup> Yuhan Mou, MA, CCC-SLP,<sup>7</sup> Nora Vanegas-Arroyave, MD,<sup>8</sup> and Karen W. Hegland, PhD, CCC-SLP<sup>7,9</sup>



(Troche et al., 2022)

## **Results: Participants**



There were no adverse events reported throughout the study (Troche et al., 2022; Doruk et al., 2023)

| Measure                           | EMST (n = 34)     | <b>smTAP (n = 31)</b> |
|-----------------------------------|-------------------|-----------------------|
| Age (y) <sup>a</sup>              | 70.5 (53.0, 87.0) | 69.1 (53.0, 81.0)     |
| Disease duration (y) <sup>a</sup> | 8.0 (1.3, 21.8)   | 7.6 (0.2, 24.7)       |
| Missing                           | 1                 | 0                     |
| Hoehn & Yahr <sup>b</sup>         |                   |                       |
| 1                                 | 0 (0%)            | 2 (6.5%)              |
| 2                                 | 26 (79%)          | 20 (65%)              |
| 2.5                               | 1 (3.0%)          | 1 (3.2%)              |
| 3                                 | 4 (12%)           | 5 (16%)               |
| 4                                 | 2 (6.1%)          | 3 (9.7%)              |
| Missing                           | 1                 | 0                     |
| Location <sup>b</sup>             |                   |                       |
| Teachers College                  | 28 (82%)          | 26 (84%)              |
| University of Florida             | 6 (18%)           | 5 (16%)               |
| Sex <sup>b</sup>                  |                   |                       |
| Female                            | 13 (38%)          | 9 (29%)               |
| Male                              | 21 (62%)          | 22 (71%)              |

## **Results:** Delayed Baseline

### Peak Expiratory Flow Rate (Voluntary Cough PEFR)

Voluntary cough PEFR decreased between baseline 1 and the 5-week delayed baseline, by an average
of 0.09 L/s or ~3% of baseline PEFR (p < .001) when controlling for the number of coughs.</li>

#### **Maximum Expiratory Pressure (MEP)**

• No significant main effect of time.



## **Results:** Summary of treatment findings

### OUTCOME

#### EMST

Penetration-Aspiration ScoreImprovedMEPImprovedVoluntary Cough PEFRImprovedReflex Cough PEFRDecreasedUrge-to-CoughNo changeFOISNo changeSWAL-QOLNo change

Improved Improved by 22 cm H20\* Improved by 0.17 L/s Decreased by 0.23 L/s No change No change

#### smTAP

Improved Improved by 8 cm H20 Improved by 0.51 L/s Improved by 0.53 L/s Improved No change No change

 Confirmed the efficacy of smTAP for the improvement of both motor AND sensory aspects of voluntary and reflex cough function, above and beyond the changes seen with EMST, the current gold standard for airway protection treatment in PD

## **Discussion: Clinical Significance**

- Changes in cough effectiveness are of clinical significance for airway protection
- <u>Voluntary</u> PEFR for participants with severe DIGEST safety profiles went from 2.83 (SD = 0.81) to 3.36 (SD = 1.06)
- <u>Reflex</u> PEFR for participants with severe DIGEST safety profiles went from 2.60 (SD = 0.63) to 2.88 (SD = 0.63).



Research Article

#### Voluntary Cough Effectiveness and Airway Clearance in Neurodegenerative Disease

James C. Borders<sup>a</sup> b and Michelle S. Troche<sup>a</sup>

<sup>a</sup> Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY

Voluntary cough PEFR values of 3.41 L/s differentiate between "effective" and "ineffective" airway clearance for ≥ 80% of subglottic residue (aspirate material)



(Borders et al., 2022)

Dysphagia https://doi.org/10.1007/s00455-021-10251-1

#### **ORIGINAL ARTICLE**

Check for

Immediate Effects of Sensorimotor Training in Airway Protection (smTAP) on Cough Outcomes in Progressive Supranuclear Palsy: A Feasibility Study

James C. Borders<sup>1</sup> · James A. Curtis<sup>1</sup> · Jordanna S. Sevitz<sup>1</sup> · Nora Vanegas-Arroyave<sup>2</sup> · Michelle S. Troche<sup>1</sup>

 Improvements in peak expiratory airflow (p < .001) and airflow variability for PEFR and CEV (p = .01) were appreciated during smTAP





(Borders, Curtis, Sevitz, Vanegas-Arroyave & Troche, 2021)

What if I do not have access to all of that equipment....

## Clinical Translation: Voluntary Cough Skill Training





x 5 weeks

1 hour

25 coughs 25 coughs 25 coughs 25 coughs

COUGH



#### Effects of Cough Training and Inspiratory Muscle Training on Cough Strength in Older Adults: A Randomized Controlled Trial

Hideo Kaneko<sup>1</sup> · Akari Suzuki<sup>1</sup> · Jun Horie<sup>2</sup>

Received: 23 September 2021 / Accepted: 24 December 2021 / Published online: 20 January 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

#### **JSLHR**

**Research Article** 

#### **Respiratory–Swallow Coordination** Training and Voluntary Cough Skill **Training: A Single-Subject**

With Park



James A. Curtis,<sup>a</sup> Averv

**Research Article** 

#### **Rehabilitation of Airway Protection in Individuals** With Movement Disorders: A Telehealth Feasibility Study

Jordanna S. Sevitz,<sup>a</sup> James C. Borders,<sup>a</sup> Avery E. Dakin,<sup>a</sup> Brianna R. Kiefer,<sup>b</sup> Roy N. Alcalay,<sup>c,d</sup> Sheng-Han Kuo,<sup>c</sup> and Michelle S. Troche<sup>a,c</sup>

<sup>a</sup>Laboratory for the Study of Upper Airway Dysfunction, Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY <sup>b</sup>Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN <sup>c</sup>Department of Neurology, Columbia University Irving Medical Center, New York, NY <sup>d</sup>Department of Neurology, Tel Aviv Sourasky Medical Center, Israel

## Individuals with spinocerebellar ataxia can upregulate cough outcomes after one session of cough skill training



# Cough Skill Training: A Step-by-Step Tutorial

### **Gold Standard**

Sensorimotor Training for Airway Protection (smTAP)

Voluntary Cough Skill Training with Spirometry

### **Clinical Implementation**

Voluntary Cough Skill Training with Handheld Peak Flow Meters



# Spirometry: Voluntary Cough Skill Training

## Step-by-step guide

- Set target line 25% above maximum peak flow from <u>voluntary</u> cough testing
- Participant sits in front of computer screen
- Provide instructions with goal to exceed the target line
- Provide feedback based on performance
- Complete 25 repetitions (5 sets of 5 repetitions)





# How can we translate this to clinical practice?

- Provide patient with handheld peak flow meter
- Set visual treatment target on the device
- Provide instructions
- Note the number and strength of their cough from handheld peak flow meter
- Provide feedback on performance

"Cough like something went down the wrong tube."



# Voluntary Cough Skill Training

Handheld Peak Flow Meter

### Troubleshooting

- Lip seal
- Proper hand placement
- Reset dial before next trial
- Follow principles of motor learning related to feedback
- Avoid over-cueing

# A useful resource

Current Otorhinolaryngology Reports https://doi.org/10.1007/s40136-023-00446-5

LARYNGOLOGY: UPDATE ON DYSPHAGIA (H STARMER AND A RAMEAU, SECTION EDITORS)



## A Primer on Hypotussic Cough: Mechanisms and Assessment

Emilie R. Lowell<sup>1</sup> · James C. Borders<sup>1</sup> · Jordanna S. Sevitz<sup>1</sup> · Avery E. Dakin<sup>1</sup> · Danielle Brates<sup>2</sup> · Michelle S. Troche<sup>1</sup>

Accepted: 27 January 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

# Thank you!



Laboratory for the Study of Upper Airway Dysfunction TEACHERS COLLEGE, COLUMBIA UNIVERSITY





https://www.tc.columbia.edu/uadlab/



Laboratory for the Study of Upper Airway Dysfunction TEACHERS COLLEGE, COLUMBIA UNIVERSITY

#### FOLLOW US ON OUR SOCIALS!



https://www.facebook.co m/UADLab

Q



@airwaylab

@AirwayLab

LEARN MORE