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Abstract

Background. Visual and auditory signs of patient functioning have long been used for clinical
diagnosis, treatment selection, and prognosis. Direct measurement and quantification of these
signals can aim to improve the consistency, sensitivity, and scalability of clinical assessment.
Currently, we investigate if machine learning-based computer vision (CV), semantic, and
acoustic analysis can capture clinical features from free speech responses to a brief interview
1 month post-trauma that accurately classify major depressive disorder (MDD) and post-
traumatic stress disorder (PTSD).
Methods. N = 81 patients admitted to an emergency department (ED) of a Level-1 Trauma
Unit following a life-threatening traumatic event participated in an open-ended qualitative
interview with a para-professional about their experience 1 month following admission. A
deep neural network was utilized to extract facial features of emotion and their intensity,
movement parameters, speech prosody, and natural language content. These features were uti-
lized as inputs to classify PTSD and MDD cross-sectionally.
Results. Both video- and audio-based markers contributed to good discriminatory classifica-
tion accuracy. The algorithm discriminates PTSD status at 1 month after ED admission with
an AUC of 0.90 (weighted average precision = 0.83, recall = 0.84, and f1-score = 0.83) as well as
depression status at 1 month after ED admission with an AUC of 0.86 (weighted average
precision = 0.83, recall = 0.82, and f1-score = 0.82).
Conclusions. Direct clinical observation during post-trauma free speech using deep learning
identifies digital markers that can be utilized to classify MDD and PTSD status.

Introduction

Treatment for psychiatric disorders is predicated on the identification of discrete psychiatric out-
comes. Yet, such outcomes say little about the mechanisms that might govern behavioral and
physiological functioning underlying the disorders. A greater understanding of such clinical char-
acteristics and their prognostic value would improve diagnostic precision, help tailor treatment
choice, and enhance risk detection and treatment outcome monitoring. A promising avenue to
this end is digital phenotyping, the direct, moment-to-moment, objective measurement of clinical
characteristics using digital data sources (Huckvale, Venkatesh, & Christensen, 2019).

Visual and vocal characteristics represent a compelling direction in digital phenotyping as
signs and symptoms of diverse central nervous system (CNS) disorders have known behavioral
signatures, such as vigilance, arousal, fatigue, agitation, psychomotor retardation, flat affect,
inattention, compulsive repetition, and negative affective biases, to name a few (American
Psychiatric Association, 2013). Advances in both deep learning and computational power
now allow for rapid and accurate measurement of myriad markers that have already demon-
strated robust effects in clinical populations. For example, facial expressions of emotion, which
have demonstrated effects in multiple clinical populations (Cohn et al., 2009; Ekman &
Friesen, 1978; Ekman, Matsumoto, & Friesen, 1997; Gaebel & Wölwer, 1992; Gehricke &
Shapiro, 2000; Girard, Cohn, Mahoor, Mavadati, & Rosenwald, 2013; Renneberg, Heyn,
Gebhard, & Bachmann, 2005) can be coded using computer vision (CV) based open-source
software (Amos, Ludwiczuk, & Satyanarayanan, 2016; Baltrusaitis, Zadeh, Lim, & Morency,
2018; Bradski & Kaehler, 2008) and utilized in real-time to measure clinical functioning
(Bao & Ma, 2014; Cohn et al., 2009; Gaebel & Wölwer, 1992; Girard et al., 2013; Wang,
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2016; Xing & Luo, 2016; Zhong, Chen, & Liu, 2014). Further,
measurements of facial emotion intensity provide a direct index
for flat affect, fatigue, and pain (Ekman, Freisen, & Ancoli, 1980;
Kohler et al., 2008; Simon, Craig, Gosselin, Belin, & Rainville,
2008). Similarly, pitch, tone, rate of speech, and valence of lan-
guage, all of which are quantifiable based on either prosaic or nat-
ural language models, index motor, mood, and cognitive
functioning (Bernard & Mittal, 2015; Cannizzaro et al., 2004;
Cohn et al., 2009; Eichstaedt et al., 2018; France, Shiavi,
Silverman, Silverman, & Wilkes, 2000; He, Veldkamp, & de
Vries, 2012; Kleim, Horn, Kraehenmann, Mehl, & Ehlers, 2018;
Leff & Abberton, 1981; Lu et al., 2012; Marmar et al., 2019;
Pestian, Nasrallah, Matykiewicz, Bennett, & Leenaars, 2010;
Quatieri & Malyska, 2012; Sobin & Sackeim, 1997; van den
Broek, van der Sluis, & Dijkstra, 2010; Yang, Fairbairn, & Cohn,
2013). Previous studies were able to link digital biomarker with
well-known symptoms of posttraumatic stress disorder (PTSD)
and major depressive disorder (MDD) that can be measured via
facial markers such as decreased flexibility of emotion expression
in PTSD (Rodin et al., 2017), decreased positive affect and higher
anger expression (Blechert, Michael, & Wilhelm, 2013; Kirsch &
Brunnhuber, 2007) and higher facial affect intensity in PTSD
(McTeague et al., 2010) as well as decreased facial expressivity in
patients with MDD (Davies et al., 2016; Gaebel & Wölwer, 1992;
Girard et al., 2013; Renneberg et al., 2005; Sloan, Strauss, Quirk,
& Sajatovic, 1997). In addition, voice markers including volume,
fundamental frequency, jitter, shimmer, and harmonics-to-noise
ratio have been associated with PTSD (Scherer, Stratou, Gratch,
& Morency, 2013; Xu et al., 2012) and MDD (Asgari, Shafran, &
Sheeber, 2014; Breznitz, 1992; Cummins, Sethu, Epps, Schnieder,
& Krajewski, 2015b; Hönig, Batliner, Nöth, Schnieder, &
Krajewski, 2014; Kiss, Tulics, Sztahó, Esposito, & Vicsi, 2016;
Nilsonne, Sundberg, Ternström, & Askenfelt, 1988; Ozdas, Shiavi,
Silverman, Silverman, & Wilkes, 2004; Porritt, Zinser,
Bachorowski, & Kaplan, 2014; Quatieri & Malyska, 2012; Scherer
et al., 2013). Previous studies also identified relevant markers of
speech content. For instance, the speech rate was negatively corre-
lated with both PTSD and depression symptom severity (Scherer,
Lucas, Gratch, Rizzo, & Morency, 2015) and narrative coherence
in PTSD (He, Veldkamp, Glas, & de Vries, 2017). Also, unique pat-
terns of speech content were identified as indicators of MDD such
as the rate of speech, lexical diversity, pauses between words and
the sentiment of speech content (Alghowinem et al., 2013; Calvo,
Milne, Hussain, & Christensen, 2017; Cummins, Epps,
Breakspear, & Goecke, 2011; Cummins et al., 2015a; Marge,
Banerjee, & Rudnicky, 2010; McNally, Otto, & Hornig, 2001;
Mowery, Smith, Cheney, Bryan, & Conway, 2016; Nilsonne, 1988,
1987; Sturim, Torres-Carrasquillo, Quatieri, Malyska, & McCree,
2011). Digital biomarkers of movement in PTSD revealed an asso-
ciation with suppressed motor activity to neutral stimuli (Litz,
Orsillo, Kaloupek, & Weathers, 2000) and heightened arousal
(Blechert et al., 2013) and increased eye blink (McTeague et al.,
2010) and increased fixation on trauma-related stimuli
(Felmingham, Rennie, Manor, & Bryant, 2011). Digital biomarkers
of movement in MDD have also been examined (Anis, Zakia,
Mohamed, & Jeffrey, 2018; Bhatia, Goecke, Hammal, & Cohn,
2019; Dibeklioğlu, Hammal, & Cohn, 2017; Shah, Sidorov, &
Marshall, 2017), such as psychomotor retardation (Syed, Sidorov,
& Marshall, 2017).

Deep learning is an emerging tool to bridge the gap between
empirical findings and explanatory theories of psychology and cog-
nitive neuroscience (Hasson, Nastase, & Goldstein, 2020). While

simple correlational analyses are limited to discern informative
associations from spurious effects (Meehl, 1990), deep neural net-
works are impressively successful in learning to mimic human cog-
nitive processes such as face recognition in a data-driven way
(LeCun, Bengio, & Hinton, 2015). Based on higher-order represen-
tations of multivariate dependencies, deep learning can achieve
near-perfect accuracy in face recognition (>99.7%) (Grother,
Ngan, & Hanaoka, 2020) without making theoretical assumptions
that explain how humans perform such tasks (Hasson et al.,
2020). Moreover, existing theories of emotion processing in
PTSD such as the early Bio-Informational Processing Theory
(Lang, 1979) can provide theoretical motivation for Digital
Phenotyping based on deep learning without the reverse being
true. Informed by existing theories, deep learning can attempt to
emulate sensory imagery and text comprehension that link and
activate conceptual networks that are directly coupled with overt
behavioral expression. However, the aim of applying deep learning
is not to accurately model such theories but, more modestly, to find
stable probabilistic patterns in a data-driven way (Valiant, 1984).
With the focus on prediction rather than explanation (Shmueli,
2010), existing theories of PTSD, such as the Emotional
Processing Theory (Foa, Huppert, & Cahill, 2006) are still highly
valuable and informative for the selection of candidate predictors,
but the successful predictive model will be theoretically agnostic
and neither corroborate nor disprove any particular explanatory
theory. Emotional Processing Theory is particularly informative
for Digital Phenotyping as it explains how the brain dynamically
integrates multidimensional information resulting in rich context-
dependent emotional, cognitive, and behavioral reactions. Deep
learning allows integrating multiple empirical associations, includ-
ing subtle ones, into a computational framework. The study of
face, voice, and speech content as indicators of human psychology
and psychopathology such as PTSD has a long tradition. As one of
the first and most well-known examples, Charles Darwin postulated
that biologically ‘hard-wired’ facial expressions of emotions
(Darwin, 1872/1965) signal and convey important information
about the emotional and mental states of a person (Ekman,
2006). Decades of neuropsychological research showed that emo-
tional expression and valence contain predictive probabilistic infor-
mation of diverse forms of psychopathology (Gaebel & Wölwer,
1992; Gehricke & Shapiro, 2000; Renneberg et al., 2005). Speech
and voice are additional channels conveying probabilistic informa-
tion about mental health (Cannizzaro et al., 2004; Cohn et al., 2009;
France et al., 2000; Leff & Abberton, 1981). Physical movements
represent a further behavioral output that can be used to character-
ize clinical functioning across a spectrum from psychomotor
retardation to agitation (Bernard & Mittal, 2015; Sobin &
Sackeim, 1997). However, dimensions of facial expressivity, speech,
and movement are most likely not univocal categorical indicators of
mutually exclusive disorders, but rather vary and overlap across
clinical presentations making these dimensions transdiagnostic
indicators of clinical functioning more generally.

A shift in focus away from psychiatric diagnostic classifica-
tions, that are known to be heterogeneous and lack a biological
basis (Galatzer-Levy & Bryant, 2013), to directly observable
dimensions of behavior and physiology, may improve diagnosis
and treatment based on the underlying neurobiological func-
tioning (Insel, 2014). For example, motor functioning is both
affected across a wide variety of psychiatric disorders (e.g. psy-
chomotor retardation in schizophrenia and depression, agitation
in anxiety disorders, and tremor in Parkinson’s disease and
essential tremor) and has known treatment targets (e.g.
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dopaminergic pathways; motor cortex activity). The direct and
frequent measurement of motor deficits can facilitate the modu-
lation of motor functioning across diverse disorders using
known treatment options.

In the current study, we examined if the direct digital measure-
ment of facial features and their intensity, head movement and
eye movement, prosaic and natural language features can accur-
ately identify clinical functioning in a population at heightened
risk for MDD and PTSD. Core features of PTSD and depression
include variability in arousal, mood, and vigilance (American
Psychiatric Association, 2013). Further, patients with PTSD and
MDD have demonstrated individual differences compared to
healthy controls in the expression of facial features of emotion,
prosaic vocal features, and speech content (Cannizzaro et al.,
2004; Cohn et al., 2009; Gaebel & Wölwer, 1992; Gehricke &
Shapiro, 2000; He et al., 2012; Kleim et al., 2018; Marmar et al.,
2019; Quatieri & Malyska, 2012; Renneberg et al., 2005; van
den Broek et al., 2010; Yang et al., 2013).

We capitalized on recent developments in deep learning
(Goodfellow, Bengio, Courville, & Bengio, 2016) that have facili-
tated groundbreaking advances in affect detection, movement
modeling, and speech/language analysis (Baltrusaitis et al., 2018;
Cannizzaro et al., 2004; Cohn et al., 2009; Gaebel & Wölwer,
1992; He et al., 2012; Kleim et al., 2018; Pestian et al., 2010;
Quatieri & Malyska, 2012; van den Broek et al., 2010; Yang
et al., 2013). Convolutional Neural Networks and Deep Neural
Networks can be utilized to identify face, voice, language, and
movement characteristics from audio and video data (Amos
et al., 2016; Baltrusaitis et al., 2018; Jadoul, Thompson, & de
Boer, 2018) and can be utilized to integrate features to build and
validate a predictive model. Intuitively, this modeling approach
matches human clinical decision making where multiple aspects
of the patient’s presentation are integrated to identify risk.

Our aim was to use CV and neural networks to label facial land-
mark features of emotions as well as landmark features for voice
prosody and to identify prognostic features of speech content
using natural language processing (NLP) and to use them as labels
for the classification of mental wellbeing. We hypothesized that
deep learning would uncover unique probabilistic information on
the integration of those information channels (multimodal fusion)
that would yield discriminatory accuracy for the prediction of post-
traumatic stress and MDD status (‘proof-of-concept’). Such models
can facilitate a more robust, accurate, ecologically valid, and ultim-
ately automated and scalable method of risk identification based on
unstructured data sources. Remote assessment of these models has
particular relevance in the context of trauma exposure, as such
events are ubiquitous, can occur rapidly and unexpectedly, and
can affect individuals who are remote from appropriate clinical ser-
vices (Carmi, Schultebraucks, & Galatzer-Levy, 2020).

Methods

Participants

Trauma survivors who were admitted to the emergency depart-
ment (ED) of a Level-1 Trauma Center after experiencing a
DSM-5 criterion A trauma were enrolled into a prospective longi-
tudinal study cohort (n = 221) from 2012 to 2017 at Bellevue
Hospital Center, New York City, NY (Schultebraucks et al.,
2020). To be included in the study, participants had to be between
18 and 70 years of age and fluent in English, Spanish, or
Mandarin. In addition, only participants who did not have an

ongoing traumatic exposure such as domestic violence, no evi-
dence of homicidal or suicidal behavior, and who were no prison-
ers were included in the study. Exclusion criteria included present
or past psychotic symptoms, open head injury, coma, or evidence
of traumatic brain injury [Glasgow Coma Scale score <13
(Teasdale et al., 2014)] or no reliable access to electronic mail
or telephone. All procedures were reviewed, approved, and mon-
itored by the NYU Institutional Review Board.

Procedure

Two primary outcomes were used in this analysis: (a) provisional
PTSD diagnosis and (b) provisional depression diagnosis (yes/no)
at 1 month following ED admission. PTSD status was evaluated
using the PTSD Checklist for DSM-5 (PCL-5) (Weathers et al.,
2013). Depression severity was evaluated using the Center for
Epidemiologic Studies of Depression Scale (CES-D) (Eaton,
Smith, Ybarra, Muntaner, & Tien, 2004). A PCL-5 total score
⩾33 and CES-D score ⩾23 was defined as the cut-off for screening
positive for a provisional diagnosis of PTSD (Weathers et al.,
2013) and provisional depression diagnosis (Henry, Grant, &
Cropsey, 2018). We used the qualifier ‘provisional diagnosis’
according to DSM-5: ‘when there is a strong presumption that
the full criteria will ultimately be met for a disorder but not
enough information is available to make a firm diagnosis’
(American Psychiatric Association, 2013). The PCL-5 shows a
‘good diagnostic utility for predicting a CAPS-5 PTSD diagnosis’
and ‘good structural validity, and sensitivity to clinical change
comparable to that of a structured interview’ (Weathers, 2017).
In the population of trauma survivors, studies found that
‘CAPS-5 and PCL-5 total scores correlated strongly (r = 0.94)’
(Geier, Hunt, Nelson, Brasel, & de Roon-Cassini, 2019). Both
measures have good reliability, convergent, concurrent, discrimin-
ant, and structural validity (Weathers, 2017).

Candidate predictors were extracted from a brief qualitative
interview that was conducted along with other procedures under
laboratory conditions at Bellevue Hospital 1 month following hos-
pital discharge. Patients were asked to respond however they saw fit
to the following five questions within a 3min predetermined time
limit for each question: (1) Tell me about your life before the event
that brought you to the hospital; (2) Tell me about the event that
brought you to the hospital; (3) Tell me about your hospital experi-
ence; (4) Tell me about your life since leaving the hospital; (5)
What are your expectations about life in the future. Interviewers
only asked brief pre-determined follow-up questions when patients
stopped responding such as ‘tell me more about that’. Interviews
were audio and video recorded with a high-resolution camera
mounted behind the interviewer’s shoulder to provide a face-on
view of the research subject.

Statistical analysis

Initial unsupervised video data processing
Images: For initial processing, each frame was extracted and then
broken down to 3 ×m × n matrices of m columns and n rows
where three matrices represent red, blue, green spectrum extracted
from the image using OpenCV (Bradski & Kaehler, 2008) in
Python. Each value in each m×n matrix represents a pixel value
from light to dark on the corresponding color spectrum.
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Data labeling: visual and auditory markers of arousal and mood
Facial features of arousal and mood: Facial expressions of emotion
were coded based on visible facial movements. Facial features cor-
responding to action units (AUs) identified by the Facial Action
Coding System (FACS) (Ekman & Friesen, 1978) were labeled
from raw MP4 video files using the OpenFace package in python
(Amos et al., 2016), which has a confidence score that is more
than 75% for face detection. The extracted raw features were
used to compute a Facial Expressivity Score for each emotion
(Happiness, Sadness, Anger, Disgust, Surprise, Fear, Contempt),
and Peak Expressivity (1, 3, 6, 9, 12, 15 s windows). We also ana-
lyzed normalized emotions according to the Emotional Facial
Action Coding System (EMFACS), Facial Expressivity Index,
and Expressivity Peak Count.

Voice prosody features of arousal: For verbal analysis, PRAAT
Software python library Parsel-mouth (Jadoul et al., 2018) was
used. We analyzed the following parameters: Audio Expressivity
Index, Audio Intensity (dB), Fundamental Frequency, Harmonic
Noise Ratio, Glottal to Noise Excitation Ratio, Voice Frame
Score, Formant Frequency Variability, Intensity Variability,
Pitch Variability, Normalized Amplitude Quotient.

Speech content features of arousal and mood: Speech content
was extracted with NLP using Receptiviti which uses the LIWC
2015 dictionary (Pennebaker, Boyd, Jordan, & Blackburn, 2015).
Extracting features include, for instance, summary language vari-
ables, linguistic dimensions, psychological, social, cognitive, per-
ceptual, and biological processes. We further extracted content
using DeepSpeech (Hannun et al., 2014), which is an open-source
pre-trained neural network model to extract text from speech.
This software identifies features like rate of speech, intent expres-
sivity, emotion label, and word repetition.

Movement features: Movement variables were extracted from
raw MP4 video files using the OpenFace package in python
(Amos et al., 2016; Baltrusaitis et al., 2018). We analyzed head
movement, attentiveness, and pupil dilation rate.

For further information on the extracted features, please see
online Supplementary Information.

Model development and model validation
Data were preprocessed using R package caret (Breiman, 1996;
Kuhn, 2008; Kuhn & Johnson, 2013). Categorical variables were
dummy coded to binary numerical values (‘one-hot encoding’)
and numerical variables were normalized to the range of [0;1].
Variables with near-zero variance were removed. We had ⩽1%
missing values. Those missing values were imputed using the
k-nearest neighbor algorithm (knnImpute in caret) (Beretta &
Santaniello, 2016).

To evaluate the model on data not used to select the model
(Hastie, Tibshirani, & Friedman, 2009), we split the total sample
into a training (75%) and test set (25%) (see online
Supplementary Table S1). We used k-fold cross-validation with
10 folds in the training set to decrease the risk of overfitting
(Stone, 1974).

For outcome prediction of provisional PTSD and provisional
depression caseness at 1 month, supervised classification used a
deep neural network with two hidden layers with Rectified
Linear Unit (‘relu’) activation (Hahnloser, Sarpeshkar,
Mahowald, Douglas, & Seung, 2000) and 20 units and an output
layer with ‘sigmoid’ binary classification using the Keras library in
Python (Chollet, 2018). Optimal weights were determined using
‘adam’ optimization of binary cross-entropy as loss function

(De Boer, Kroese, Mannor, & Rubinstein, 2005) and precision
as the evaluation metric for binary classification.

The pipeline of data analysis is visualized in Fig. 1.
To examine the stability of our results, we additionally used

two times repeated nested cross-validation with a 10-fold inner
loop and a 10-fold outer loop for prediction of provisional
PTSD and depression diagnostic status at 1 month after ED
admission.

Additionally, we predicted PTSD and MDD symptom severity
using two deep neural networks with two hidden layers with ‘relu’
activation and 20 units and an output layer. Optimal weights were
determined using ‘adadelta’ optimization of ‘mean squared error’
as the loss function and mean absolute error (MAE) as an evalu-
ation metric.

Predictive importance ranking
We used Explainable Machine Learning using SHAP (SHapley
Additive exPlanation) to identify those features that are mainly
responsible for driving the individual outcome prediction. It is
an additive feature attribution method that uses kernel functions
and currently the gold standard to interpret deep neural networks
(Lundberg & Lee, 2017).

Results

We extracted 247 features in N = 81 trauma survivors (N = 34,
42.5% female; mean age 37.86 ± 13.99; N = 20, 25% were
Hispanic) as shown in Table 1.

Predictive model performance

The neural networks achieved good predictive power in the internal
test set for predicting the provisional diagnosis (see Fig. 2). The
algorithm achieved high discriminatory accuracy to classify PTSD
status (AUC = 0.9, weighted average precision = 0.83, weighted
average recall = 0.84, weighted average f1-score = 0.83) and MDD
status (AUC = 0.86, weighted average precision = 0.83, weighted
average recall = 0.82, weighted average f1-score = 0.82) in the
internal test set.

The neural network for predicting PTSD symptom severity
obtained a root-mean-squared-error (RMSE) of 10.31, MAE of
6.38, and R2 = 0.60. For predicting MDD symptom severity, we
attained an RMSE of 7.23, MAE of 5.58, and R2 = 0.62.

Using the classifier obtained using a nested cross-validation
approach, we achieved an AUC = 0.88 (weighted average preci-
sion = 0.89, weighted average recall = 0.87, weighted average
f1-score = 0.87) for predicting MDD status and an AUC = 0.9
(weighted average precision = 0.9, weighted average recall = 0.89,
weighted average f1-score = 0.9) for predicting PTSD.

Ranking the features for predictive value

Figures 3 and 4 display the variable importance using SHAP fea-
ture ranking. All four domains (face, voice, speech content, and
movement) were ranked highly among the 20 most important
predictors. The most important predictors for predicting PTSD
and MDD status were NLP features, but also features of voice
prosody such as audio intensity (PTSD and MDD status), pitch
(PTSD status), facial features of emotion (PTSD and MDD sta-
tus), and movement features, such as pupil dilation rate (MDD
status). The most important predictor for PTSD was NPL
LIWC ‘self-assured’ followed by NLP LIWC ‘compare’ with the
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other predictors with similar variable importance (see Fig. 3a).
The most important predictor for MDD status was age, followed
by NLP LIWC ‘workhorse’ and NLP LIWC ‘organized’ with simi-
lar variable importance ranking for the following predictors (see
Fig. 3b). We found similar predictive features when predicting
PTSD and depression symptom severity at 1 month after ED
admission (see Fig. 3c and d). A description of the definition of
each feature shown in the variable importance ranking (Figs 3
and 4) can be found in online Supplementary Table S2.

Discussion

We utilized CV and NLP, and audio analysis to measure features
associated with mood and arousal during free and continuous
speech. In keeping with our underlying hypothesis that the

integration of multiple sources of information will provide a
stronger prediction than one source independently
(Schultebraucks & Galatzer-Levy, 2019), we utilized a deep learn-
ing neural network approach. By analogy, a clinician interviewing
a patient will integrate visual, auditory, and linguistic information
to assess a patient. Experienced clinicians will process many more
channels of information, can make use of context-dependent
prior clinical experience, and will be able to form an empathetic
therapeutic alliance. Although no algorithm is able to capture
this level of skilled clinical expertise, there are common and
much more fundamental clues of overt behavior that can be
objectively encoded using digital methods and the development
of such tools can further support clinicians by providing objective
access to behavioral clues that are otherwise automatically pro-
cessed by humans and often not perceived with deliberate

Fig. 1. The pipeline of data analysis.

Table 1. Sample characteristics

All participants (N = 81) ‘PTSD’ v. ‘no PTSD’ ‘MDD’ v. ‘no MDD’

Age (mean ± S.D.) 37.86 ± 13.99 t(74) = 0.89, p = 0.38 t(65) = 2.04, p = 0.05 (younger age in MDD)

Gender (% Female) 42.5% χ2(1) = 0.003, p = 0.96 χ2(1) = 0.194, p = 0.66

Trauma types (%) χ2(9) = 7.64, p = 0.57 χ2(10) = 5.76, p = 0.84

Gunshot wound 1.2%

Pedestrian v. car 16.0%

Motor vehicle collision 13.6%

Motorcycle collision 2.5%

Bike accident 32.1%

Fall 17.3%

Non-sexual assault 8.6%

Others 8.7%
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attention. The encoding of such objective information about overt
behavioral clues of visual, auditory, and linguistic information can
be formalized and deployed in a reproducible manner using
neural network architecture that encodes high dimensional repre-
sentations of the relationship between multiple features (i.e. face,

movement, speech, and language). The features that we found to
be most important for the classification of provisional PTSD and
MDD corroborated pre-existing findings reported in the current
literature. We extended those findings to demonstrate that inte-
grated features from different modalities, i.e. face, voice prosody,

Fig. 2. Receiver operating characteristic (ROC) curve of the internal test set for predicting (a) PCL-5 cut-off ⩾33 (AUC = 0.90) and (b) CES-D cut-off ⩾23 (AUC = 0.86).

Fig. 3. SHAP (SHapley Additive exPlanations) variable importance (Lundberg & Lee, 2017) of the Neural Network for the internal test set for predicting (a) PCL-5
cut-off ⩾33, (b) CES-D cut-off ⩾23, (c) PCL-5 symptom severity, and (d ) CES-D symptom severity. The mean absolute SHAP value per feature is presented in the bar
plot with larger bar plots displaying higher importance of the feature in discriminating between the ‘provisional PTSD diagnosis’ and ‘no PTSD’/‘provisional depres-
sion diagnosis’ and ‘no depression’. The variable importance based on SHAP values is calculated by evaluating the model performance with and without each
feature included in the model in every possible order.
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speech content, and movement, all contribute uniquely to the
classification and prediction of both MDD and PTSD.

A significant body of research has identified facial, vocal, and
motor movement markers of neuro-psychiatric functioning
(Bernard & Mittal, 2015; Cannizzaro et al., 2004; Cohn et al.,
2009; Eichstaedt et al., 2018; Gaebel & Wölwer, 1992; Gehricke
& Shapiro, 2000; He et al., 2012; Kleim et al., 2018; Lu et al.,
2012; Pestian et al., 2010; Quatieri & Malyska, 2012; Renneberg
et al., 2005; Sobin & Sackeim, 1997; van den Broek et al., 2010;
Yang et al., 2013). These characteristics relate to core symptom-
atology across diverse disorder including posttraumatic stress
and depression as well as resilience (Cannizzaro et al., 2004;
Cohn et al., 2009; France et al., 2000; Gaebel & Wölwer, 1992;
Gehricke & Shapiro, 2000; He et al., 2012; Kleim et al., 2018;
Leff & Abberton, 1981; Pestian et al., 2010; Quatieri & Malyska,
2012; Renneberg et al., 2005; van den Broek et al., 2010; Yang
et al., 2013). In addition to informing psychopathology, these
markers also provide information about CNS mechanisms that
may affect clinical functioning and identify treatable targets for
intervention. Visual and auditory markers have long been asso-
ciated with mood and arousal, which in turn, represent core

features of posttraumatic stress pathology including PTSD and
depression (Otte et al., 2016; Shalev, Liberzon, & Marmar, 2017).

Our classification algorithm, based on participants’ free discus-
sion of their trauma experience, identified many of the features
previously found to be predictive. For example, consistent with
the literature, we observed that higher fear-expressivity and anger-
expressivity were important for the classification of PTSD while
higher contempt-expressivity was predictive of MDD (Ekman &
Friesen, 1978; Ekman et al., 1997). Similarly, consistent with the
literature, we found that the increased use of first-person singular
pronouns provided probabilistic information in classifying PTSD
(Kleim et al., 2018) and that reduced frequency of positive words
predicted depression (Pennebaker, Mehl, & Niederhoffer, 2003;
Rude, Gortner, & Pennebaker, 2004) while lowered audio inten-
sity and reduced pitches per frame was relevant to the classifica-
tion of PTSD (Marmar et al., 2019). This concordance with
existing literature provides important validation of the probabilis-
tic information used by our classification algorithm.

Extracting features from unstructured video data sources offers
several important advantages. Beginning with the introduction of
the research diagnostic criteria (Spitzer, Endicott, & Robins,

Fig. 4. SHAP (Lundberg & Lee, 2017) summary dot plot of the Neural Network for the internal test set for predicting (a) PCL-5 cut-off ⩾33 and (b) CES-D cut-off ⩾23,
(c) PCL-5 symptom severity and (d) CES-D symptom severity. The higher the SHAP value of a feature, the higher the log odds of the ‘provisional PTSD diagnosis’/
‘provisional depression diagnosis’. On the y-axis, the features are sorted by their general feature importance (see Fig. 4). The dots represent, for each variable value
of each participant in the sample, how the variable value influences the attribution of the participant to one of the two outcome classes. Dots that are on the left
side shift the classification of participants to the class ‘no PTSD/no MDD’, whereas dots on the right side of the x-axis shift the classification of participants to the
class ‘PTSD/MDD’. The color represents the range of the feature values from low (blue) to high (red). For instance, the lower the score for the feature ‘positive
emotion’ (NLP), the higher the odds for ‘provisional depression diagnosis’ (Fig. 4b).
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1978), which aimed to align clinical research and practice around
objective criteria, visual and auditory signs were either measured
through expert rating or through introspective self-report. While
this created standardization, it was limited by the need for a rigid
structure to assess symptoms, challenges of inter-rater reliability,
subjective error in assessment, and significant assessment time bur-
den. Our results successfully demonstrate ‘proof-of-concept’ by
showing that clinical features measured without a rigid assessment
structure yield discriminatory accuracy to classify provisional PTSD
or MDD diagnostic status. The results are based on clinical signs
captured from free exchanges with a para-professional. Further,
multiple signs can be assessed simultaneously, reducing the assess-
ment burden. The use of algorithms to code clinical signs also
obviates issues of inter-rater reliability as the algorithm performs
identically each time. The use of algorithms rather than rating
scales provides a real number metric rather than a ranking of sever-
ity. The use of real numbers, by definition, increases the sensitivity
of the metric. Finally, the use of audio and video data sources is
scalable as it can be integrated into cellphones and web-based tele-
medicine applications. This can greatly increase the reach of assess-
ment of clinical functioning.

There are also some limitations to note. Most importantly, the
sample size will caution against the direct generalization to other
samples without replication. Future studies might benefit from
incorporating additional contextual information and feedback
from experienced clinicians into the analysis. Our approach suc-
cessfully combined multiple information channels such as facial
emotion expression with NLP sentiment analysis based on word
frequencies. This already provides contextual information across
different modalities since facial expression complement character-
istics of speech and audio modalities. However, with the benefits
of larger samples, it will be useful to go beyond word frequencies
by identifying predictive features of sentence-level meaning units
and to directly test for cross-modal interactions of facial expres-
sions and verbal expressions of emotion. While the current algo-
rithm internally accounts for possible non-linear dependence
between modalities in a data-driven way, the current approach
is limited by not explicitly testing potential interactions between
features and modalities. The variable importance ranking high-
lights the features that were, on average, most important to dis-
criminate between ‘PTSD’ or ‘MDD’ and ‘no PTSD’ or ‘no
MDD’ respectively. However, since the classification is only
achieved by the combination of all variables together, the inter-
pretation of univariate associations is limited and should not be
interpreted causally. Larger samples are required to corroborate
our results and also to directly test for interactions between facial
and verbal modalities that provide an important opportunity to
incorporate the rich clinical expertise of experienced clinicians.
Moreover, the current study was focused on the classification of
‘PTSD’ v. ‘no PTSD’ and ‘MDD’ v. ‘no MDD’ while it would
also be clinically relevant to discriminate between ‘PTSD’ and
‘MDD’ which remains an important desideratum for further stud-
ies. Another limitation is the reliance on pre-trained models for
feature extraction. While we used state-of-the-art methods, there
are known limitations and risk of bias that need to be pointed
out with regard to facial expression recognition (Buolamwini &
Gebru, 2018; Klare, Burge, Klontz, Bruegge, & Jain, 2012) and
NLP (Caliskan, Bryson, & Narayanan, 2017).

The next step is to further gauge the predictive performance of the
digital biomarkers in larger samples and, most importantly, in
diverse and heterogeneous patient populations. To go beyond
‘proof-of-concept’, rigorous testing in a large confirmatory study

design is warranted for extensive clinical validation (Mathews et al.,
2019).

Conclusion

This study presented an approach that robustly and accurately
predicted mental well-being in trauma survivors using an auto-
mated, scalable and ecologically valid method. Our proof-of-con-
cept analysis requires further development and validation in
independent samples. Nonetheless, the results demonstrated
that construct-valid features such as facial affect, movement,
speech content, and prosody can be captured in minimally struc-
tured contexts to accurately quantify clinical functioning. These
results hold significant implications for how deep learning-based
methods can automate and scale clinical assessment. Our results
also suggest implications for the fields’ ability to put a clinical
focus on discrete behavioral and physiological dimensions as
metrics of risk and treatment response consistent with the
research domain criteria approach (Cuthbert & Insel, 2013;
Insel, 2014; Insel et al., 2010). The emphasis on directly observ-
able behavior and physiology shifts the attention away from a nar-
row focus on psychiatric diagnostic classifications that are known
to be heterogeneous and lack a biological basis (Galatzer-Levy &
Bryant, 2013). Remote assessment based on digital markers is, for
instance, important in the context of trauma exposure in inaccess-
ible areas after natural catastrophes or unsafe terrain such as war-
zone or areas of humanitarian crises, which often affect
individuals who are distant from appropriate clinical services
(Carmi et al., 2020). There is a high potential for the future use
of remote assessment using digital biomarkers in these circum-
stances and the here presented proof-of-principle demonstration
of digital biomarkers for PTSD and MDD warrants further inves-
tigation in larger samples and diverse clinical contexts. Ultimately,
digital biomarkers bear great promise to improve current tele-
medicine services to provide digital diagnostic screening at scale.
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