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Abstract
The loss of a loved one is a potentially traumatic event that can
result in disparate outcomes and symptom patterns. Machine
learning methods offer computational tools to probe this het-
erogeneity and understand grief psychopathology in its
complexity. In this article, we examine the latest contributions
to the scientific study of bereavement reactions garnered
through the use of computational methods. We focus on find-
ings originating from trajectory modeling studies, as well as the
recent insights originating from the network analysis of
prolonged grief symptoms. We also discuss applications of
artificial intelligence for the accurate identification of major
depression and post-traumatic stress, as examples for their
potential applications to the study of loss reactions.
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Introduction
Grief over the death of an important person in our lives

is a distressing and potentially traumatic event (PTE).
Beginning with the very first systematic studies of
bereavement [1], researchers have nearly universally
assumed that the initial grief experience leads to only
two possible outcomes: either a gradual resolution of the
initial grief into a more manageable form of integrated
grief or a prolonged and pathological form of unresolved
grief [2]. Although theories of grieving vary in their
conception of the mechanisms that might inform this
www.sciencedirect.com
binary pathway [3], generally it has been assumed that
successful resolution of grief requires active engage-
ment, sometimes referred to as ‘grief work’, on the part
of the grieving individual, whereas prolonged grief
comes about primarily due to an inability or failure to

successfully complete the work of mourning.

Although the characteristics and risk factors leading to
pathological bereavement responses have been increas-
ingly studied with empirical methods, this research re-
mains firmly rooted in a similar top-down theoretical
framework. Such an epistemic approach has two major
shortcomings. First, it heavily downplays rates of psy-
chological resilience after the loss because of its a priori
focus on maladaptive responses within clinical
samplesdin steep contrast to population findings

showing most individuals being able to successfully cope
to the loss [4]. Second, it produced substantial debates
among competing theories attempting to establish the
core features of grief-related pathologydto the point of
offering conflicting interpretation of the same analytic
results [5]. Different theoretic frameworks ultimately
resulted in a plethora of alternative diagnostic criteria
for a prolonged grief disorder (PGD), which possibly
slowed its adoption in psychiatric diagnostic manuals
and dissemination to clinicians.
A comparative perspective to the study of grief reactions
has emergedwith the advent of advances in computational
modeling. Although first appearing in relatively primitive

form [6], computational approaches to bereavement
research have evolved in lockstep with technical advances
over the past two decades, developing innovative data sci-
ence tools to studymental health outcomes [7].With these
advances also came the ability to probe a wide variety of
diverse bereavement outcomes and to study their charac-
teristics beyond diagnostic constructsddown to a person-
alized level. These insights have been achieved by the
proliferation ofmachine learningmethods and in particular
unsupervised learning approaches, which interrogate data
in search for patterns while suspending expectations of

predeterminedoutcomes (other than learningparameters)
[8]. Such methods provide the tools to capture population
trends and detect symptom clusters, which makes them
particularly useful to study heterogeneous reactions to
PTEs [9,10]. Importantly, computational approaches are
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not divorced from theory. Rather, they complement and in
some cases expand theory through bottom-up procedures,
by probing the validity of both existing and alterative
frameworks through emergent findings.

In this review, we elaborate on the recent use of computa-
tional methods to address key issues in bereavement. In
particular, we focus on unsupervised machine learning.

First, we examine findings from latent trajectory modeling
studies, which use mixture modeling to tease outcome
heterogeneity within large samples after the loss. We then
examine recent discoveries captured from network analysis
studies,whichusegraphical lassomodels to associate aswell
as visualize the elements of grief psychopathology and its
correlates. Finally, we discuss forthcoming supervised arti-
ficial intelligence (AI) approaches. These cutting-edge
methods have already offered important contributions in
the study of reactions to other PTEs [11] and hold promise
in moving the scientific study of reactions to loss toward

more empirically grounded theory.
Trajectory modeling
In the early 2000s, longitudinal trajectory research on
bereavement research showed that grief outcomes were

heterogeneous: some people experienced ongoing,
disabling levels of distress, whereas others experienced
symptoms that gradually declined, and still others expe-
rienced little or nodisruption in functioning [6,12].These
findings, however, suffered from methodological limita-
tions as they were based on relatively simple statistical
assumptions: trajectories were derived from the overall
sample distribution and somewhat arbitrary cut points.
Theexplorationofpopulationheterogeneitybecamemore
empirically grounded with the adoption of unsupervised
learning approaches. One such approach, latent growth
mixture modeling (LGMM) [13], tests whether the

sample is best represented by a single response trajectory
or several discrete populations, each characterized by a
different growth curve pattern [14]. Owing to its compu-
tational flexibility, LGMM emerged as a practical meth-
odologytodemonstratepopulationheterogeneity inawide
variety of PTEs [15]. Applications of LGMM to bereave-
ment not only confirmed but also extended and clarified
the basic trajectory patterns identified using more basic
analytic approaches [16,17]. Although most of the early
work on trajectories of grief reactionswas conducted using
depression symptoms, more recent studies were able to

examine trajectories of grief-specific symptoms [18e20].
Across these different samples and measures, the modal
reaction to the loss was psychological resilience, withmild
to no symptoms, whereas patterns of clinically relevant
symptoms emerged only for a fraction of individuals. Both
patterns occurred at rates consonant with those observed
in response to other PTEs [15].

Because of the lack of consensus on a grief diagnosis, none
of the aforementioned studies examined different sets of
Current Opinion in Psychology 2022, 43:13–17
symptoms, nor how they vary in their capacity to capture
adjustmentover time.Nonetheless, temporal sensitivity is
fundamental for accurately distinguishing culturally
appropriate grief from clinically relevant responses. To
answer this question, we examined grief trajectories based
on clinical interview data from spousal bereavement for
both Diagnostic and Statistical Manual of Mental Disor-
derse5 [21] and International Classification ofDiseasese
11 [22] grief diagnoses. LGMM symptom trajectories
showed that PGD symptoms (from the International
Classification of Diseasese11 diagnosis) were more sen-
sitive to changes over time (by capturing a more diverse
range of trajectories), as well as better associated with
caseness, functioning, and depression [23].

LGMM has also been used to identify elements that
account for differences in how grief reactions develop
over time. Although no major difference has been
identified based on the type of loss [17], recent research

showed that gender can account for outcome differ-
ences. In another study of spousal bereavement [24],
the prolonged grief trajectory captured the largest pro-
portion of probable PGD cases in both genders. How-
ever, within prolonged grief, men showed more acute
symptoms at baseline, whereas women showed higher
likelihood of symptom increase over time. This study
suggests that prospective risk factors of bereavement
responses can be identified through further analysis of
LGMM trajectories in greater detail than overall sub-
group delineation.
Network analyses of grief symptoms
Another example of advancements stemming from
computational methods is the use of network analysis. As
effective treatments for prolonged grief reactions prolif-
erated [25], the need for a reliable and valid grief diag-

nosis became imperative. However, debate about what
might constitute its core elements was contentious [26].
Network analysis not only provided a useful method to
address this problem but also offered a new way to think
about psychopathology. It is an emergent approach
fostered by the availability of statistical packages able to
run its computations [27] (i.e. typically consisting of
regularized lasso-penalized partial correlation models).
Networks examine psychopathology at the levels of
symptoms. Thus, prolonged grief is examined as an
interconnected network made by individual

symptom interactions [27]. For example, a well-
documented symptom interaction observed in grief is
the association between yearning about the deceased and
emotional pain [28e30]. Loneliness also emerged as a
highly interconnected element of grief-related pathology
[30,31],which interestingly remains equally important in
another type of social disruption, divorce [32].

Beyond studying symptom patterns, network analysis
can help identify the most important or central
www.sciencedirect.com
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symptoms which, in turn, are likely to foster the
development of psychopathology [33]. Stable findings
on the structure and centrality of post-traumatic stress
disorder (PTSD) [34] and major depression [35]
symptoms have emerged across multiple cross-sectional
studies. Similar exploratory work on the structure of
grief psychopathology is underway. Analyses of multiple
samples show yearning and emotional pain to be strongly

central elements of grief pathology [28e30], confirming
their status as core symptoms. A more surprising and
emergent result showed meaninglessness and role
confusion to be strongly central elements [30,36].
Consistently, meaninglessness was strongly associated
with differences in quality of life [37], and changes in
worldview are associated with personal growth after the
loss [38]. These findings demonstrate the importance of
thinking of grief pathology as a complex system, rather
than a diagnostic construct. An even more nuanced
understanding of the causal development of prolonged

grief will likely emerge from temporal networks based
on ecological momentary assessments [39].
Combining trajectories and networks
A promising but as yet untested approach involves the

combination of longitudinal modeling and network
analysis. The possibility for such an integration comes
from recent work based on dynamical latent variable
modeling, in which networks are created from longitu-
dinal ‘snapshots’ of data [40] (see Figure 1). This
approach has been suggested as a solution to tackle
heterogeneity within network analysis [41], which
otherwise considers the sample under analysis as ho-
mogeneous. Proof of concept combining networks and
latent growth has been shown to tease networks over
time in a large development cohort [42]. Dynamical
latent variable modeling also allows integration of tra-

jectories with networks by producing separate networks
Figure 1

Trajectory and network models as computational approaches to study
reactions to loss and to other potentially traumatic events (PTEs).

www.sciencedirect.com
for the different subpopulations previously identified
via LGMM. The ability to compare symptom patterns
between populations with different outcomes may offer
compelling insights on the mechanisms through which
grief pathology develops (e.g. chronic symptom vs.
remitting symptom networks).
Artificial intelligence and the road ahead
Further opportunities for computational investigations
of grief come from recent advances in AI-driven ap-
proaches. These methods capture high-dimensional
nonlinear relationships that can associate different in-
formation levels (e.g. biological, multiomics) with

mental health outcomes [11]. In a recent study, a deep
neural network model accurately associated polygenic
risk scores with prospective bereavement outcomes over
six years (along other PTEs), as identified through
LGMM [43]. In another study, LGMM trajectories of
PTSD symptoms over one year were accurately predic-
ted from biological and psychological variable captured
at the initial ER visit (immediately after the PTE). The
algorithm for this model was also externally validated in
an independent sample of trauma survivors from an in-
dependent emergency trauma center [44].

Beyond their use in more sophisticated analyses, AI-
derived methods including computer vision and natural
language processing hold tremendous promise as
empirical markers of mental health status. Algorithms
have the ability to objectively discriminate elements that
represent symptoms, including facial expressions, voice
prosody, affect, psychomotor traits, and conversational
sentiment [8]. Recent developments show that both
PTSD and depression [45,46] can be algorithmically
detected through the analysis of raw multimedia data.
Conversational analysis has also been used to identify

levels of suicidal thoughts and behavior [47], symptoms
of particular relevance to grief-related pathology [23].
Given the similarities in outcome patterns between
different PTEs [15], we believe that combined visual,
speech, and linguistic analysis could successfully improve
the empirical quality of the study of grief reactions.
Conclusions
This review examined some of the most important trends
in computational approaches to bereavement. We pri-
marily focused on trajectory and network modeling
studies, as well as the latest advancements in AI in their
role to detect, tease, and conceptualize patterns across
populations and symptom data. Importantly, we are not
advocating that the field should flatten into a data mining
venture, as the specific characteristics of samples and of

the analytic models can still strongly influence study out-
comes. There is a garden of forking paths behind every
analyticmodel, and anymethodology can influence results
as much as theory [48]. Nevertheless, we believe that
Current Opinion in Psychology 2022, 43:13–17
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computational approaches have the advantage of trans-
parency, given their data-driven nature and the ability to
share analytic codes and methods. These characteristics
meet the fundamental requirements needed to improve
replicability in science, offering insights on grief that are
clear and can be re-evaluated in multiple groups and con-
texts. Given these considerations, we believe that
embracing computational methods is an important step to

make our field as scientific as possible, with the ultimate
goal of providing treatment and informing policies that are
firmly rooted in data.
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