What Factors Affect Israeli 8th Graders' Math Achievement?

- A Two-Level Hierarchical Linear Model (HLM) Analysis

Zhenyang Yu, MA Candidate
Teachers College, Columbia University

Abstract

The purpose of this study is to investigate the effects of school-level socioeconomic status as well as student-level factors, including gender, ethnicity and aspiration for future education have on math achievement among Israeli 8th-grade students. Additionally, the interaction effect between gender and ethnicity is also examined at both levels. Through Hierarchical Linear Model (HLM) analysis of TIMSS 2019 data, the study finds that math achievement is strongly associated with percentages of economically disadvantaged students at the school-level and students' aspiration for future education. While the gender variable alone does not significantly affect math scores, results indicate that boys' advantages in math exist more in the Jewish educational sector.

LEVEL-1
(STUDENT-LEVEL)
LEVEL-2
$(\mathrm{SCHOOL}-L E V E L)$

1) To what extent does Israeli 8th-grade students' math achievement vary among schools and within schools in Israel?
2) To what extent do the effects of student-level (level-1) variables (gender, language, educational aspiration) and to what extent the $\%$ of economically disadvantaged students at school (level-2 variable) are associated with Israeli 8th-grade students' math performance in TIMSS 2019?
3) To what extent does the effect of gender differ by language and ethnicity (between Jewish and Arab students)?

Methods

Since individuals are nested within groups (ie. students nest within schools), HLM is used as an alternative method of traditional 1-level linear model. Its benefits include:

1) being able to avoid mixing individuals or groups as the unit of analysis,
2) dealing with more complicated sampling strategies,
3) generating more accurate estimates of parameters, and
4) enabling researchers to analyze more complex questions across groups.

A: The unconditional mode

for student i in school j is explained by the equation:

$$
\text { Mathscore }_{i j}=\boldsymbol{y}_{00}+\mathrm{u}_{\mathrm{i} j}+\varepsilon_{i j}
$$

$\boldsymbol{\beta}$ is the school mean tor dependent variabie. \boldsymbol{y} in the equation is the grand-mean of math scores across schools, and u is the variance in school mean from the grand mean. $\mathrm{u}_{0} \square$ is the variance between groups and $\varepsilon_{0} \square$ is the variance within groups, they provide measure of intraclass correlation (ICC). Large ICC means high similarity in math scores between schools.

B: Student-Level Model (Level-1 Random Intercept Model)

$$
\mathrm{ICC}=\sigma_{u \theta j}^{2} / \sigma^{2} \varepsilon_{i j}+\sigma_{u \theta j}^{2}
$$

C: Teacher-Level Model (Level 2 Random Intercept Model)

$$
\text { Mathscore }_{i j}=\boldsymbol{y}_{00}+\boldsymbol{y}_{10} \text { Male }_{e_{i}}+\boldsymbol{y}_{20} \text { Hebrew }_{t}+\boldsymbol{y}_{30} \text { Eduaspiration }_{i t}+\boldsymbol{y}_{40} \text { Gender }^{*}
$$

$$
\text { Eduaspiration }_{t}+y_{60} \text { Language } * \text { Eduaspiration }_{t}+\varepsilon_{i j}+u_{\theta j}
$$

the reduction in variance estimate for the within-group and between-school is:

$$
\text { Mathscore }_{i j}=\boldsymbol{y}_{00}+\boldsymbol{y}_{01} \text { Econdis }+\boldsymbol{y}_{10} \text { Male }_{6}+\boldsymbol{y}_{20} \text { Hebrew }_{6}+\boldsymbol{y}_{30} \text { Eduaspiration }_{6}+y_{40}
$$

$$
\text { Gender }^{*} \text { Eduaspiration }_{t}+y_{50} \text { Language }^{*} E_{\text {Eduaspiration }}^{t}+\varepsilon_{i j}+\text { ue }_{\boldsymbol{j}}
$$

the reduction in variance estimate for the within and between school:

Results

	$\begin{gathered} \text { Model A } \\ \begin{array}{c} \text { Standardized } \\ \text { coefficient } \end{array} \end{gathered}$	sud.rror				,
${ }_{\text {mecresen }}$	51607	200	4566.0.	630	4818,	6046
Hetrew				${ }^{1063}$	${ }^{249}$	1139
Mate	-		${ }^{\frac{6.140}{6040}}$	${ }^{426}$	546	${ }^{428}$
Emasprimion	-		\% 395	223		273
Lamase				${ }_{5} 21$	$\left[\frac{206010}{\boxed{01010}}\right.$	523
Menceoris					$\frac{2977.0}{[237}$	488
\ldots	474\%		320%		388%	
$\begin{aligned} & \text { Amount of Variance } \\ & \text { Explained by the } \\ & \text { Model } \end{aligned}$		Sex		${ }^{\text {cises }}$		
		(vilis		cwin		

[^0]Average math scores that students receive vary across schools and within school units
Positive relationship between student's educational aspirations and math. Negative relationship between \% economically disadvantaged students and math
The effect of gender varies when taking ethnicity language into consideration. Boys' advantages in math exist more in the Jewish educational sector, which resonates with the findings in Zuzovsky, 2001 the effect of language is significant in the first level but becomes no longer significant when adding school SES

Acknowledgements

Zuvovsky, R. (2010). The impact of socioceconomic versus lingusisicic factors on a achive venent gap between
 achieverents. Sudides in Educational Evalataio, 36(4), 153-161.
 from hitps/linss2019 oresintemational-databsed
 edition). New Yookk, NY: Routledge. 98803674246602
 Routledge. Chapers $1-4$ (pages $1-70$).

[^0]: Soce

