Siegler, Robert S. (rss2169)
Skip to content Skip to main navigationOffice:
465 GDodge
Scholarly Interests
Dr. Robert Siegler has written 9 books, edited 6 others, and authored more than 250 articles, monographs, and book chapters. His research focuses on how children learn mathematics and how theoretical understanding of mathematical development can be applied to improving that learning. His research led to the prediction, confirmed by subsequent research, that playing certain numerical board games yields broad, rapid, and enduring gains in preschoolers' and elementary school children's numerical understanding, particularly for children from low-income backgrounds.
Dr. Siegler's contributions have been honored in many ways, including being awarded the American Psychological Association's Distinguished Contribution Award in 2005, serving on the U.S. National Mathematics Advisory Panel from 2006-2008, election to the National Academy of Education in 2010, heading the development of a Practice Guide on fractions learning for the U. S. Department of Education in 2010, being appointed Director of the Siegler Center for Innovative Learning at Beijing Normal University in 2012, and election to the Society of Experimental Psychologists in 2015.
Educational Background
How I Got Into Psychology: http://siegler.tc.columbia.edu/blog/
For more information, please see Dr. Siegler’s CV.
Selected Publications
In PressMcMullen, J., & Siegler, R. S. (In press). Spontaneous focusing on multiplicative relations and fraction magnitude knowledge. Mathematical Thinking and Learning. Siegler, R. S. (In press). Development of numerical knowledge. In O. Houdé & G. Borst (Eds.), The Cambridge handbook of cognitive development. Cambridge, United Kingdom: Cambridge University Press. Siegler, R. S., & Alibali, M. W. (In press). Children's thinking, 5th edition. Upper Saddle River, NJ: Prentice Hall. 20192018Braithwaite, D. W., & Siegler, R. S. Do children understand fraction addition? Developmental Science. Early bird on line publication, September 12, 2017. doi: 10.1111/desc.12601. Braithwaite, D. W., & Siegler, R. S. Children learn spurious associations in their math textbooks: Examples from fraction arithmetic. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: 10.1037/xlm0000546 Braithwaite, D. W., & Siegler, R. S. (2018). Developmental changes in whole number bias. Developmental Science, 21(2), e12541. doi: 10.1111/desc.12541. 2017Braithwaite, D. W., Pyke, A. A., & Siegler, R. S.( 2017). A computational model of fraction arithmetic. Psychological Review, 124(5), 603-625. doi: 10.1037/rev0000072 Lortie-Forgues, H., & Siegler, R. S. (2017). Conceptual knowledge of decimal arithmetic. Journal of Educational Psychology, 109(3), 374-386. doi: 10.1037/edu0000148 Siegler, R. S., & Braithwaite, D. W. (2017). Numerical development. Annual Review of Psychology, 68, 187-213. doi: 10.1146/annurev-psych-010416-044101 Siegler, R. S., & Lortie-Forgues, H. (2017). Hard lessons: Why rational number arithmetic is so difficult for so many people. Current Directions in Psychological Science, 26(4), 346-351. doi: 10.1177/0963721417700129. NOTE: This article can be accessed at the journal’s website online at: http://journals.sagepub.com/doi/full/10.1177/0963721417700129 Tian, J., & Siegler, R. S. (2017). Fractions learning in children with mathematics difficulties. Journal of Learning Disabilities, 50(6), 614-620. doi: 10.1177/0022219416662032 Tian, J., & Siegler, R. S(2017). Which type of rational numbers should students learn first? Educational Psychology Review. Published online publication, July 4, 2017. doi: 10.1007/s10648-017-9417-3. 2016Fazio, L. K., DeWolf, M., & Siegler, R. S. (2016). Strategy use and strategy choice in fraction magnitude compartison. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 1-16 doi: 10.1037/xlm0000153 Fazio, L. K., Kennedy, C., & Siegler, R. S. (2016). Improving children’s knowledge of fraction magnitudes. PLOS ONE. doi: 10.1371/journal/one.0165243 Siegler, R. S. (2016). Continuity and change in the field of cognitive development and in the perspectives of one cognitive developmentalist. Child Development Perspectives, 10(2), 128-133. doi: 10.1111/cdep.12173 Siegler, R. S. (2016). How does change occur? In R. Sternberg, S. Fiske, & D. Foss, (Eds.), Scientists making a difference: One hundred eminent behavioral and brain scientists talk about their most important contributions (pp. 223-227). New York: Cambridge University Press. Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19, 341-361. doi: 10.1111/desc.12395 2015Bailey, D. H., Zhou, X., Zhang, Y., Cui, J., Fuchs, L. S., Jordan, N. C., Gersten, R., & Siegler, R. S. (2015). Development of fraction concepts and procedures in U.S. and Chinese children. Journal of Experimental Child Psychology, 129, 68-83, early bird on-line publication, September 29, 2014, doi: 10.1016/j.jecp.2014.08.006. Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review, 38, 201-221, doi: 10.1016/j.dr.2015.07.008 Siegler, R., Fuchs, L., Jordan, N., Gersten, R., & Ochsendorf, R. (2015). The Center for Improving Learning of Fractions: A progress report. In S. Chinn (Ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties, (pp. 292-303). New York: Routledge. Siegler, R. S., & Lortie-Forgues, H. (2015). Conceptual knowledge of fraction arithmetic. Journal of Educational Psychology, 107, 909-918. doi: 10.1037/edu0000025 Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5-13. doi: http://dx.doi.org/10.1016/j.learninstruc. 2014.03.002. 2014Bailey, D., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledge. Developmental Science, 17, 775-785, doi: 10.1111/desc.12155. Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72, doi: http://dx.doi.org/10.1016/j.jecp.2014.01.013. Laski, E. V., & Siegler, R. S. (2014). Learning from number board games: You learn what you encode. Developmental Psychology, 50, 853-864, doi: 10.1037/a0034321. Ramani, G. B., & Siegler, R. S. (2014). How informal learning activities can promote children’s numerical knowledge. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of mathematical cognition, published on-line, 3-2014, doi: 10.1093/oxfordhb/9780199642342.013.012. Siegler, R. S., & Lortie-Forgues, H. (2014). An integrative theory of numerical development. Child Development Perspectives, 8, 144-150, doi: 10.1111/cdep.12077. Siegler, R. S., & Thompson, C. A. (2014). Numerical landmarks are useful – Except when they’re not. Journal of Experimental Child Psychology, 120, 39-58, doi: http://dx.doi.org/10.1016/j.jecp.2013.11.014. Vukovic, R. K., Fuchs, L. S., Geary, D. C., Jordan, N. C., Gersten, R., & Siegler, R. S. (2014). Sources of individual differences in children’s understanding of fractions. Child Development, 85, 1461-1476, doi: 10.1111/cdev.12218. Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. (2014). What’s past is prologue: Relations between early mathematics knowledge and high school achievement. Educational Researcher, 43, 352-360, doi: 10.3102/0013189X14553660. For other articles Dr. Siegler has written, please download his CV from the Documents Link next to the Wordle above, or see his Selected Publications links at http://siegler.tc.columbia.edu/. Thank you. |